Machine learning-based approach for predicting flow boiling heat transfer coefficient at high saturation temperatures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F25%3A00012803" target="_blank" >RIV/46747885:24210/25:00012803 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0735193324013009" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0735193324013009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.icheatmasstransfer.2024.108538" target="_blank" >10.1016/j.icheatmasstransfer.2024.108538</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning-based approach for predicting flow boiling heat transfer coefficient at high saturation temperatures
Popis výsledku v původním jazyce
This paper explores the prediction performance of nine (9) machine learning (ML) models at high saturation temperatures for which most empirical models have been reported to fail. Over thousand five hundred data points were carefully compiled from seven different authors utilizing three different working fluids that have been applied or recommended to work well in high temperature applications. Both dimensional and dimensionless features of the dataset were evaluated and compared. Results indicate that machine learning models offer enhanced accuracy compared to empirical models. From the nine machine learning models evaluated, for the case of dimensional features, Gradient Boosting, XGBoost, K-Nearest Neighbor, and Random Forest were the best performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. In the case of dimensionless features, Gradient Boosting, XGBoost, Random Forest, and Extra Tree were the best-performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. Overall, XGBoost, Gradient Boosting, and Random Forest were the models that remained resolute in their performance when the data was transformed from dimensional to dimensionless features. Feature importance was also performed to rank the features on how they contributed to the models‘ prediction.
Název v anglickém jazyce
Machine learning-based approach for predicting flow boiling heat transfer coefficient at high saturation temperatures
Popis výsledku anglicky
This paper explores the prediction performance of nine (9) machine learning (ML) models at high saturation temperatures for which most empirical models have been reported to fail. Over thousand five hundred data points were carefully compiled from seven different authors utilizing three different working fluids that have been applied or recommended to work well in high temperature applications. Both dimensional and dimensionless features of the dataset were evaluated and compared. Results indicate that machine learning models offer enhanced accuracy compared to empirical models. From the nine machine learning models evaluated, for the case of dimensional features, Gradient Boosting, XGBoost, K-Nearest Neighbor, and Random Forest were the best performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. In the case of dimensionless features, Gradient Boosting, XGBoost, Random Forest, and Extra Tree were the best-performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. Overall, XGBoost, Gradient Boosting, and Random Forest were the models that remained resolute in their performance when the data was transformed from dimensional to dimensionless features. Feature importance was also performed to rank the features on how they contributed to the models‘ prediction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Communications in Heat and Mass Transfer
ISSN
0735-1933
e-ISSN
—
Svazek periodika
161
Číslo periodika v rámci svazku
31 December 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001421918300001
EID výsledku v databázi Scopus
2-s2.0-85213524282