Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning-based approach for predicting flow boiling heat transfer coefficient at high saturation temperatures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F25%3A00012803" target="_blank" >RIV/46747885:24210/25:00012803 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0735193324013009" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0735193324013009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.icheatmasstransfer.2024.108538" target="_blank" >10.1016/j.icheatmasstransfer.2024.108538</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning-based approach for predicting flow boiling heat transfer coefficient at high saturation temperatures

  • Popis výsledku v původním jazyce

    This paper explores the prediction performance of nine (9) machine learning (ML) models at high saturation temperatures for which most empirical models have been reported to fail. Over thousand five hundred data points were carefully compiled from seven different authors utilizing three different working fluids that have been applied or recommended to work well in high temperature applications. Both dimensional and dimensionless features of the dataset were evaluated and compared. Results indicate that machine learning models offer enhanced accuracy compared to empirical models. From the nine machine learning models evaluated, for the case of dimensional features, Gradient Boosting, XGBoost, K-Nearest Neighbor, and Random Forest were the best performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. In the case of dimensionless features, Gradient Boosting, XGBoost, Random Forest, and Extra Tree were the best-performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. Overall, XGBoost, Gradient Boosting, and Random Forest were the models that remained resolute in their performance when the data was transformed from dimensional to dimensionless features. Feature importance was also performed to rank the features on how they contributed to the models‘ prediction.

  • Název v anglickém jazyce

    Machine learning-based approach for predicting flow boiling heat transfer coefficient at high saturation temperatures

  • Popis výsledku anglicky

    This paper explores the prediction performance of nine (9) machine learning (ML) models at high saturation temperatures for which most empirical models have been reported to fail. Over thousand five hundred data points were carefully compiled from seven different authors utilizing three different working fluids that have been applied or recommended to work well in high temperature applications. Both dimensional and dimensionless features of the dataset were evaluated and compared. Results indicate that machine learning models offer enhanced accuracy compared to empirical models. From the nine machine learning models evaluated, for the case of dimensional features, Gradient Boosting, XGBoost, K-Nearest Neighbor, and Random Forest were the best performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. In the case of dimensionless features, Gradient Boosting, XGBoost, Random Forest, and Extra Tree were the best-performing models with Mean Absolute Errors (MAEs) less than 10 % and R-square values over 95 %. Overall, XGBoost, Gradient Boosting, and Random Forest were the models that remained resolute in their performance when the data was transformed from dimensional to dimensionless features. Feature importance was also performed to rank the features on how they contributed to the models‘ prediction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Communications in Heat and Mass Transfer

  • ISSN

    0735-1933

  • e-ISSN

  • Svazek periodika

    161

  • Číslo periodika v rámci svazku

    31 December 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    001421918300001

  • EID výsledku v databázi Scopus

    2-s2.0-85213524282