Trade-off between GPGPU based implementations of multi object tracking particle filter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00003877" target="_blank" >RIV/46747885:24220/17:00003877 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.visigrapp.org/?y=2017" target="_blank" >http://www.visigrapp.org/?y=2017</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trade-off between GPGPU based implementations of multi object tracking particle filter
Popis výsledku v původním jazyce
In this work, we present the design, analysis and implementation of a decentralized particle filter (DPF) for multiple object tracking (MOT) on a graphics processing unit (GPU). We investigate two variants of the implementation, their advantages and caveats in terms of scaling with larger particle numbers and performance on several datasets. First we compare the precision of our GPU implementation with standard CPU version. Next we compare performance of the GPU variants under different scenarios. The results show the GPU variant leads to a five fold speedup on average (in best cases the speedup reaches a factor of 18) over the CPU variant while keeping similar tracking accuracy and precision.
Název v anglickém jazyce
Trade-off between GPGPU based implementations of multi object tracking particle filter
Popis výsledku anglicky
In this work, we present the design, analysis and implementation of a decentralized particle filter (DPF) for multiple object tracking (MOT) on a graphics processing unit (GPU). We investigate two variants of the implementation, their advantages and caveats in terms of scaling with larger particle numbers and performance on several datasets. First we compare the precision of our GPU implementation with standard CPU version. Next we compare performance of the GPU variants under different scenarios. The results show the GPU variant leads to a five fold speedup on average (in best cases the speedup reaches a factor of 18) over the CPU variant while keeping similar tracking accuracy and precision.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů