Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Supervised Independent Vector Analysis Through Pilot Dependent Components

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004532" target="_blank" >RIV/46747885:24220/17:00004532 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/03/icassp2017.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/03/icassp2017.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2017.7952213" target="_blank" >10.1109/ICASSP.2017.7952213</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Supervised Independent Vector Analysis Through Pilot Dependent Components

  • Popis výsledku v původním jazyce

    Unknown global permutation of the separated sources, time-varying source activity and under determination are common problems affecting on-line Independent Vector Analysis when applied to real-world speech enhancement. In this work we propose to extend the signal model of IVA by introducing additional supervising components. Pilot signals, which are dependent on the sources, are injected in the multidimensional source representation and act as a prior knowledge. The resulting adaptation still maximizes the multivariate source independence, while simultaneously forcing the estimation of sources dependent on the pilot components. It is also shown as the S-IVA is a generalization over the previously proposed weighted Natural Gradient. Numerical evaluations shows the effectiveness of the proposed method in challenging real-world applications.

  • Název v anglickém jazyce

    Supervised Independent Vector Analysis Through Pilot Dependent Components

  • Popis výsledku anglicky

    Unknown global permutation of the separated sources, time-varying source activity and under determination are common problems affecting on-line Independent Vector Analysis when applied to real-world speech enhancement. In this work we propose to extend the signal model of IVA by introducing additional supervising components. Pilot signals, which are dependent on the sources, are injected in the multidimensional source representation and act as a prior knowledge. The resulting adaptation still maximizes the multivariate source independence, while simultaneously forcing the estimation of sources dependent on the pilot components. It is also shown as the S-IVA is a generalization over the previously proposed weighted Natural Gradient. Numerical evaluations shows the effectiveness of the proposed method in challenging real-world applications.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE International Conference on Audio, Speech, and Signal Processing 2017

  • ISBN

    978-1-5090-4117-6

  • ISSN

    15206149

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    536-540

  • Název nakladatele

  • Místo vydání

    New Orleans, USA

  • Místo konání akce

    New Orleans, USA

  • Datum konání akce

    1. 1. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000414286200108