Independent Vector Analysis Exploiting Pre-Learned Banks of Relative Transfer Functions for Assumed Target’s Positions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006131" target="_blank" >RIV/46747885:24220/18:00006131 - isvavai.cz</a>
Výsledek na webu
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018SIVA.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018SIVA.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93764-9_26" target="_blank" >10.1007/978-3-319-93764-9_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Independent Vector Analysis Exploiting Pre-Learned Banks of Relative Transfer Functions for Assumed Target’s Positions
Popis výsledku v původním jazyce
On-line frequency-domain blind separation of audio sources performed through Independent Vector Analysis (IVA) suffers from the problem of determining the order of the separated outputs. In this work,we apply a supervised IVA based on pilot components obtained using a bank of Relative Transfer Functions (RTF). The bank is assumed to be available for potential positions of a target speaker within a confined area. In every frame, the most suitable RTF is selected from the bank based on a criterion. The pilot components are obtained as pre-separated target and interference, respectively, through the Minimum-Power Distortionless Beamforming and Null Beamforming. The supervised IVA is tested in a real-world scenario with various levels of up-to-dateness of the bank. We show that the global permutation problem is resolved even when the bank contains only pure delay filters. The Signal-to-Interference Ratio in separated signals is mostly better than that achieved by the pre-separation, unless the bank contains very precise RTFs.
Název v anglickém jazyce
Independent Vector Analysis Exploiting Pre-Learned Banks of Relative Transfer Functions for Assumed Target’s Positions
Popis výsledku anglicky
On-line frequency-domain blind separation of audio sources performed through Independent Vector Analysis (IVA) suffers from the problem of determining the order of the separated outputs. In this work,we apply a supervised IVA based on pilot components obtained using a bank of Relative Transfer Functions (RTF). The bank is assumed to be available for potential positions of a target speaker within a confined area. In every frame, the most suitable RTF is selected from the bank based on a criterion. The pilot components are obtained as pre-separated target and interference, respectively, through the Minimum-Power Distortionless Beamforming and Null Beamforming. The supervised IVA is tested in a real-world scenario with various levels of up-to-dateness of the bank. We show that the global permutation problem is resolved even when the bank contains only pure delay filters. The Signal-to-Interference Ratio in separated signals is mostly better than that achieved by the pre-separation, unless the bank contains very precise RTFs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00902S" target="_blank" >GA17-00902S: Pokročilé metody slepé separace podprostorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - The 14th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2018)
ISBN
9783319937632
ISSN
03029743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
270-279
Název nakladatele
—
Místo vydání
—
Místo konání akce
Guildford, UK
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—