Robust Recognition of Speech with Background Music in Acoustically Under-Resourced Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006123" target="_blank" >RIV/46747885:24220/18:00006123 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462674" target="_blank" >http://dx.doi.org/10.1109/ICASSP.2018.8462674</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462674" target="_blank" >10.1109/ICASSP.2018.8462674</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Recognition of Speech with Background Music in Acoustically Under-Resourced Scenarios
Popis výsledku v původním jazyce
This paper addresses the task of Automatic Speech Recognition (ASR) with music in the background. We consider two different situations: 1) scenarios with very small amount of labeled training utterances (duration 1 hour) and 2) scenarios with large amount of labeled training utterances (duration 132 hours). In these situations, we aim to achieve robust recognition. To this end we investigate the following techniques: a) multi-condition training of the acoustic model, b) denoising autoencoders for feature enhancement and c) joint training of both above mentioned techniques. We demonstrate that the considered methods can be successfully trained with the small amount of labeled acoustic data. We present substantially improved performance compared to acoustic models trained on clean speech. Further, we show a significant increase of accuracy in the under-resourced scenario, when utilizing additional amount of non-labeled data. Here, the non-labeled dataset is used to improve the accuracy of the feature enhancement via autoencoders. Subsequently, the autoencoders are jointly fine-tuned along with the acoustic model using the small amount of labeled utterances.
Název v anglickém jazyce
Robust Recognition of Speech with Background Music in Acoustically Under-Resourced Scenarios
Popis výsledku anglicky
This paper addresses the task of Automatic Speech Recognition (ASR) with music in the background. We consider two different situations: 1) scenarios with very small amount of labeled training utterances (duration 1 hour) and 2) scenarios with large amount of labeled training utterances (duration 132 hours). In these situations, we aim to achieve robust recognition. To this end we investigate the following techniques: a) multi-condition training of the acoustic model, b) denoising autoencoders for feature enhancement and c) joint training of both above mentioned techniques. We demonstrate that the considered methods can be successfully trained with the small amount of labeled acoustic data. We present substantially improved performance compared to acoustic models trained on clean speech. Further, we show a significant increase of accuracy in the under-resourced scenario, when utilizing additional amount of non-labeled data. Here, the non-labeled dataset is used to improve the accuracy of the feature enhancement via autoencoders. Subsequently, the autoencoders are jointly fine-tuned along with the acoustic model using the small amount of labeled utterances.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-153864658-8
ISSN
1520-6149
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5624-5628
Název nakladatele
IEEE
Místo vydání
Kanada
Místo konání akce
Calgary, Kanada
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000446384605157