The Influence of Errors in Phonetic Annotations on Performance of Speech Recognition System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006129" target="_blank" >RIV/46747885:24220/18:00006129 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-00794-2_45" target="_blank" >http://dx.doi.org/10.1007/978-3-030-00794-2_45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-00794-2_45" target="_blank" >10.1007/978-3-030-00794-2_45</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Influence of Errors in Phonetic Annotations on Performance of Speech Recognition System
Popis výsledku v původním jazyce
This paper deals with errors in acoustic training data and the influence on speech recognition performance. The training data can be prepared manually, automatically or by combination of these two. In all cases, some mislabeled phonemes can appear in phonetic annotations. We conducted series of experiments which simulate some common errors. The experiments deal with various amount of changes in phonetic annotations such as different types of changes in voicing of obstruents, random substitution of consonants or vowels and random deleting of phonemes. All experiments were done for Czech language using GlobalPhone speech data set and both Gaussian mixture models and deep neural networks were used for acoustic modeling. The results show that some amount of such errors in training data does not influence speech recognition accuracy. The accuracy is significantly influenced only by large amount of errors (more than 50%)
Název v anglickém jazyce
The Influence of Errors in Phonetic Annotations on Performance of Speech Recognition System
Popis výsledku anglicky
This paper deals with errors in acoustic training data and the influence on speech recognition performance. The training data can be prepared manually, automatically or by combination of these two. In all cases, some mislabeled phonemes can appear in phonetic annotations. We conducted series of experiments which simulate some common errors. The experiments deal with various amount of changes in phonetic annotations such as different types of changes in voicing of obstruents, random substitution of consonants or vowels and random deleting of phonemes. All experiments were done for Czech language using GlobalPhone speech data set and both Gaussian mixture models and deep neural networks were used for acoustic modeling. The results show that some amount of such errors in training data does not influence speech recognition accuracy. The accuracy is significantly influenced only by large amount of errors (more than 50%)
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 21st International Conference on Text, Speech, and Dialogue, TSD 2018
ISBN
978-303000793-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
419-427
Název nakladatele
Springer Verlag
Místo vydání
—
Místo konání akce
Brno, Czech republic
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—