The Impact of Inaccurate Phonetic Annotations on Speech Recognition Performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004818" target="_blank" >RIV/46747885:24220/17:00004818 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-64206-2_45" target="_blank" >http://dx.doi.org/10.1007/978-3-319-64206-2_45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-64206-2_45" target="_blank" >10.1007/978-3-319-64206-2_45</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Impact of Inaccurate Phonetic Annotations on Speech Recognition Performance
Popis výsledku v původním jazyce
This paper focuses on impact of phonetic inaccuracies of acoustic training data on performance of automatic speech recognition system. This is especially important if the training data is created in automated way. In this case, the data often contains errors in a form of wrong phonetic transcriptions. A series of experiments simulating various common errors in phonetic transcriptions based on parts of GlobalPhone data set (for Croatian, Czech and Russian) is conducted. These experiments show the influence of various errors on different languages and acoustic models (Gaussian mixture models, deep neural networks). The impact of errors is also shown for real data obtained by our automated ASR creation process for Belarusian. The results show that the best performance is achieved by using the most accurate data; however, certain amount of errors (up to 5%) does have relatively small impact on speech recognition accuracy
Název v anglickém jazyce
The Impact of Inaccurate Phonetic Annotations on Speech Recognition Performance
Popis výsledku anglicky
This paper focuses on impact of phonetic inaccuracies of acoustic training data on performance of automatic speech recognition system. This is especially important if the training data is created in automated way. In this case, the data often contains errors in a form of wrong phonetic transcriptions. A series of experiments simulating various common errors in phonetic transcriptions based on parts of GlobalPhone data set (for Croatian, Czech and Russian) is conducted. These experiments show the influence of various errors on different languages and acoustic models (Gaussian mixture models, deep neural networks). The impact of errors is also shown for real data obtained by our automated ASR creation process for Belarusian. The results show that the best performance is achieved by using the most accurate data; however, certain amount of errors (up to 5%) does have relatively small impact on speech recognition accuracy
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/TA04010199" target="_blank" >TA04010199: MULTILINMEDIA - Multilinguální platforma pro monitoring a analýzu multimédií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
9783319642055
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
402-410
Název nakladatele
Springer Verlag
Místo vydání
Německo
Místo konání akce
Praha, Česká Republika
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—