Comparison of current methods for implementing periodic boundary conditions in multi-scale homogenisation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F19%3A00007252" target="_blank" >RIV/46747885:24220/19:00007252 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24410/19:00007252
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0997753818308453?token=4E91ED155030D02D4A4543D5CC6885D514C8A6FDD4A05B4AFE0E53599F0D43F9FC37819A6D8AB16802BB57C11E944C79" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0997753818308453?token=4E91ED155030D02D4A4543D5CC6885D514C8A6FDD4A05B4AFE0E53599F0D43F9FC37819A6D8AB16802BB57C11E944C79</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.euromechsol.2019.103825" target="_blank" >10.1016/j.euromechsol.2019.103825</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of current methods for implementing periodic boundary conditions in multi-scale homogenisation
Popis výsledku v původním jazyce
Correctly representing the micro-scale model boundaries is fundamental to the performance and accuracy of multi-scale homogenisation. Although enforcing periodic boundary conditions is known to lead to more effective property approximation in comparison with that achieved with kinematic/uniform force boundary conditions, implementing them imposes restrictions on the mesh generation process and makes the process of solving the underlying variational problem more complicated. This study reviews the current implementation methods, which employ meshless and finite element approaches to maintain field periodicity. Finally, we propose a new method based on Nitsche's weak formulation and compare it with other state-of-the-art techniques. The results of several benchmarks demonstrate that all tested methods are highly robust and accurate, with minor method-specific issues.
Název v anglickém jazyce
Comparison of current methods for implementing periodic boundary conditions in multi-scale homogenisation
Popis výsledku anglicky
Correctly representing the micro-scale model boundaries is fundamental to the performance and accuracy of multi-scale homogenisation. Although enforcing periodic boundary conditions is known to lead to more effective property approximation in comparison with that achieved with kinematic/uniform force boundary conditions, implementing them imposes restrictions on the mesh generation process and makes the process of solving the underlying variational problem more complicated. This study reviews the current implementation methods, which employ meshless and finite element approaches to maintain field periodicity. Finally, we propose a new method based on Nitsche's weak formulation and compare it with other state-of-the-art techniques. The results of several benchmarks demonstrate that all tested methods are highly robust and accurate, with minor method-specific issues.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Mechanics-A/Solids
ISSN
0997-7538
e-ISSN
—
Svazek periodika
78
Číslo periodika v rámci svazku
November-December 2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000494888000003
EID výsledku v databázi Scopus
2-s2.0-85073649075