Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F20%3A00007819" target="_blank" >RIV/46747885:24220/20:00007819 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/20:00532740 RIV/68407700:21340/20:00344851
Výsledek na webu
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2020/09/LARGE_The_Lower_Bound_for_Separation_Accuracy_of_Independent_Vector_Extraction.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2020/09/LARGE_The_Lower_Bound_for_Separation_Accuracy_of_Independent_Vector_Extraction.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2020.3022827" target="_blank" >10.1109/TSP.2020.3022827</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models
Popis výsledku v původním jazyce
Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramer-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independent of the other signals. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and yield new results for the complex domain. Also, the CRLB for independent component extraction (ICE) is shown to coincide with that for independent component analysis (ICA) when the non-Gaussianity of background is taken into account. Second,we extend the CRLB analysis to piecewise determined mixing models, where the observed signals are assumed to obey thedetermined mixing model within short blocks where the mixing matrices can be varying from block to block. This model has applications, for instance, when separating dynamic mixtures. Either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks.The CRLBs for the parameters of these models bring new performance limits for the BSE problem.
Název v anglickém jazyce
Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models
Popis výsledku anglicky
Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramer-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independent of the other signals. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and yield new results for the complex domain. Also, the CRLB for independent component extraction (ICE) is shown to coincide with that for independent component analysis (ICA) when the non-Gaussianity of background is taken into account. Second,we extend the CRLB analysis to piecewise determined mixing models, where the observed signals are assumed to obey thedetermined mixing model within short blocks where the mixing matrices can be varying from block to block. This model has applications, for instance, when separating dynamic mixtures. Either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks.The CRLBs for the parameters of these models bring new performance limits for the BSE problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-17720S" target="_blank" >GA20-17720S: Pokročilé modely směsí pro slepou extrakci signálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
5230-5243
Kód UT WoS článku
000576252300002
EID výsledku v databázi Scopus
—