Dealing with Newly Emerging OOVs in Broadcast Programs by Daily Updates of the Lexicon and Language Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F20%3A00008351" target="_blank" >RIV/46747885:24220/20:00008351 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-60276-5_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-60276-5_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60276-5_10" target="_blank" >10.1007/978-3-030-60276-5_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dealing with Newly Emerging OOVs in Broadcast Programs by Daily Updates of the Lexicon and Language Model
Popis výsledku v původním jazyce
This paper deals with out-of-vocabulary (OOV) word recognition in the task of 24/7 broadcast stream transcription. Here, the majority of OOVs newly emerging over time are constituted of names of politicians, athletes, major world events, disasters, etc. The absence of these content OOVs, e.g. COVID-19, is detrimental to human understanding of the recognized text and harmful to further NLP processing, such as machine translation, named entity recognition or any type of semantic or dialogue analysis. In production environments, content OOVs are of extreme importance and it is essential that their correct transcription is provided as soon as possible. For this purpose, an approach based on daily updates of the lexicon and language model is proposed. It consists of three consecutive steps: a) the identification of new content OOVs from already existing text sources, b) their controlled addition into the lexicon of the transcription system and c) proper tuning of the language model. Experimental evaluation is performed on an extensive data-set compiled from various Czech broadcast programs. This data was produced by a real transcription platform over the course of 300 days in 2019. Detailed statistics and analysis of new content OOVs emerging within this period are also provided.
Název v anglickém jazyce
Dealing with Newly Emerging OOVs in Broadcast Programs by Daily Updates of the Lexicon and Language Model
Popis výsledku anglicky
This paper deals with out-of-vocabulary (OOV) word recognition in the task of 24/7 broadcast stream transcription. Here, the majority of OOVs newly emerging over time are constituted of names of politicians, athletes, major world events, disasters, etc. The absence of these content OOVs, e.g. COVID-19, is detrimental to human understanding of the recognized text and harmful to further NLP processing, such as machine translation, named entity recognition or any type of semantic or dialogue analysis. In production environments, content OOVs are of extreme importance and it is essential that their correct transcription is provided as soon as possible. For this purpose, an approach based on daily updates of the lexicon and language model is proposed. It consists of three consecutive steps: a) the identification of new content OOVs from already existing text sources, b) their controlled addition into the lexicon of the transcription system and c) proper tuning of the language model. Experimental evaluation is performed on an extensive data-set compiled from various Czech broadcast programs. This data was produced by a real transcription platform over the course of 300 days in 2019. Detailed statistics and analysis of new content OOVs emerging within this period are also provided.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 22nd International Conference on Speech and Computer, SPECOM 2020
ISBN
978-303060275-8
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
97-107
Název nakladatele
Springer Nature Switzerland
Místo vydání
Switzerland
Místo konání akce
(on-line) St. Petersburg, Russian
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—