Dynamic Independent Component/Vector Analysis: Time-Variant Linear Mixtures Separable by Time-Invariant Beamformers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00008709" target="_blank" >RIV/46747885:24220/21:00008709 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/21:00542013 RIV/68407700:21340/21:00374185
Výsledek na webu
<a href="https://arxiv.org/abs/2007.11241" target="_blank" >https://arxiv.org/abs/2007.11241</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2021.3068626" target="_blank" >10.1109/TSP.2021.3068626</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Independent Component/Vector Analysis: Time-Variant Linear Mixtures Separable by Time-Invariant Beamformers
Popis výsledku v původním jazyce
A novel extension of Independent Component and Independent Vector Analysis for blind extraction/separation of one or several sources from time-varying mixtures is proposed. The mixtures are assumed to be separable source-by-source in series or in parallel based on a recently proposed mixing model that allows for the movements of the desired source while the separating beamformer is time-invariant. The popular FastICA algorithm is extended for these mixtures in one-unit, symmetric and block-deflation variants. The algorithms are derived within a unified framework so that they are applicable in the real-valued as well as complex-valued domains, and jointly to several mixtures, similar to Independent Vector Analysis. Performance analysis of the one-unit algorithm is provided; it shows its asymptotic efficiency under the given mixing and statistical models. Numerical simulations corroborate the validity of the analysis, confirm the usefulness of the algorithms in separation of moving sources, and show the superior speed of convergence and ability to separate super-Gaussian as well as sub-Gaussian signals.
Název v anglickém jazyce
Dynamic Independent Component/Vector Analysis: Time-Variant Linear Mixtures Separable by Time-Invariant Beamformers
Popis výsledku anglicky
A novel extension of Independent Component and Independent Vector Analysis for blind extraction/separation of one or several sources from time-varying mixtures is proposed. The mixtures are assumed to be separable source-by-source in series or in parallel based on a recently proposed mixing model that allows for the movements of the desired source while the separating beamformer is time-invariant. The popular FastICA algorithm is extended for these mixtures in one-unit, symmetric and block-deflation variants. The algorithms are derived within a unified framework so that they are applicable in the real-valued as well as complex-valued domains, and jointly to several mixtures, similar to Independent Vector Analysis. Performance analysis of the one-unit algorithm is provided; it shows its asymptotic efficiency under the given mixing and statistical models. Numerical simulations corroborate the validity of the analysis, confirm the usefulness of the algorithms in separation of moving sources, and show the superior speed of convergence and ability to separate super-Gaussian as well as sub-Gaussian signals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-17720S" target="_blank" >GA20-17720S: Pokročilé modely směsí pro slepou extrakci signálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
2158-2173
Kód UT WoS článku
000645052600001
EID výsledku v databázi Scopus
2-s2.0-85103266969