Gradient Algorithms for Complex Non-Gaussian Independent Component/Vector Extraction, Question of Convergence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00500102" target="_blank" >RIV/67985556:_____/19:00500102 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24220/19:00006125
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8579170" target="_blank" >https://ieeexplore.ieee.org/document/8579170</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2018.2887185" target="_blank" >10.1109/TSP.2018.2887185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gradient Algorithms for Complex Non-Gaussian Independent Component/Vector Extraction, Question of Convergence
Popis výsledku v původním jazyce
We revise the problem of extracting one independent component from an instantaneous linear mixture of signals. The mixing matrix is parameterized by two vectors: one column of the mixing matrix, and one row of the demixing matrix. The separation is based on the non-Gaussianity of the source of interest, while the remaining background signals are assumed to be Gaussian. Three gradient-based estimation algorithms are derived using the maximum likelihood principle and are compared with the Natural Gradient algorithm for Independent Component Analysis and with One-Unit FastICA based on negentropy maximization. The ideas and algorithms are also generalized to the extraction of a vector component when the extraction proceeds jointly from a set of instantaneous mixtures. Throughout this paper, we address the problem concerning the size of the region of convergence for which the algorithms guarantee the extraction of the desired source. We show that the size is influenced by the signal-to-interference ratio on the input channels. Simulations comparing several algorithms confirm this observation. They show a different size of the region of convergence under a scenario in which the source of interest is dominant or weak. Here, our proposed modificationsof the gradient methods, taking into account the dominance/weakness of the source, showimproved global convergence.n
Název v anglickém jazyce
Gradient Algorithms for Complex Non-Gaussian Independent Component/Vector Extraction, Question of Convergence
Popis výsledku anglicky
We revise the problem of extracting one independent component from an instantaneous linear mixture of signals. The mixing matrix is parameterized by two vectors: one column of the mixing matrix, and one row of the demixing matrix. The separation is based on the non-Gaussianity of the source of interest, while the remaining background signals are assumed to be Gaussian. Three gradient-based estimation algorithms are derived using the maximum likelihood principle and are compared with the Natural Gradient algorithm for Independent Component Analysis and with One-Unit FastICA based on negentropy maximization. The ideas and algorithms are also generalized to the extraction of a vector component when the extraction proceeds jointly from a set of instantaneous mixtures. Throughout this paper, we address the problem concerning the size of the region of convergence for which the algorithms guarantee the extraction of the desired source. We show that the size is influenced by the signal-to-interference ratio on the input channels. Simulations comparing several algorithms confirm this observation. They show a different size of the region of convergence under a scenario in which the source of interest is dominant or weak. Here, our proposed modificationsof the gradient methods, taking into account the dominance/weakness of the source, showimproved global convergence.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00902S" target="_blank" >GA17-00902S: Pokročilé metody slepé separace podprostorů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
67
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1050-1064
Kód UT WoS článku
000455720600015
EID výsledku v databázi Scopus
2-s2.0-85058892691