Orthogonally constrained independent component extraction: Blind MPDR beamforming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00478273" target="_blank" >RIV/67985556:_____/17:00478273 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.23919/EUSIPCO.2017.8081389" target="_blank" >http://dx.doi.org/10.23919/EUSIPCO.2017.8081389</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/EUSIPCO.2017.8081389" target="_blank" >10.23919/EUSIPCO.2017.8081389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthogonally constrained independent component extraction: Blind MPDR beamforming
Popis výsledku v původním jazyce
We propose a novel technique for the extraction of one independent component from an instantaneous linear complex-valued mixture of signals. The mixing model is optimizednin terms of the number of parameters that are necessary to simultaneously estimate one column of the mixing matrix and one row of the de-mixing matrix, which both correspond to the desired source. The desired source is assumed to have a non-Gaussian distribution, while the other sources are modeled, for simplicity, as Gaussian-distributed, although in applications the other sources can be arbitrary. We propose an algorithm that can be interpreted as a blind self-steering Minimum-Power Distortionless Response (MPDR) beamformer. The method is compared with the popular Natural Gradient algorithm for general Independent Component Analysis. Their performances arencomparable but the proposed method has a lower computational complexity, in examples, it is about four times faster.
Název v anglickém jazyce
Orthogonally constrained independent component extraction: Blind MPDR beamforming
Popis výsledku anglicky
We propose a novel technique for the extraction of one independent component from an instantaneous linear complex-valued mixture of signals. The mixing model is optimizednin terms of the number of parameters that are necessary to simultaneously estimate one column of the mixing matrix and one row of the de-mixing matrix, which both correspond to the desired source. The desired source is assumed to have a non-Gaussian distribution, while the other sources are modeled, for simplicity, as Gaussian-distributed, although in applications the other sources can be arbitrary. We propose an algorithm that can be interpreted as a blind self-steering Minimum-Power Distortionless Response (MPDR) beamformer. The method is compared with the popular Natural Gradient algorithm for general Independent Component Analysis. Their performances arencomparable but the proposed method has a lower computational complexity, in examples, it is about four times faster.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00902S" target="_blank" >GA17-00902S: Pokročilé metody slepé separace podprostorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 25th European Signal Processing Conference (EUSIPCO 2017)
ISBN
978-0-9928626-7-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1195-1199
Název nakladatele
EURASIP
Místo vydání
Atheny
Místo konání akce
Kos
Datum konání akce
28. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426986000233