Logo Detection and Identification in System for Audio-Visual Broadcast Transcription
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00009295" target="_blank" >RIV/46747885:24220/21:00009295 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9522636" target="_blank" >https://ieeexplore.ieee.org/document/9522636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP52935.2021.9522636" target="_blank" >10.1109/TSP52935.2021.9522636</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Logo Detection and Identification in System for Audio-Visual Broadcast Transcription
Popis výsledku v původním jazyce
We present logo detection and identification based on a single-stage deep convolutional detector, the Scaled YOLOv4. This method is used in our system for audio-visual broadcast transcription and indexing which can be employed mainly for transcription of TV programs, mostly sports and advertising blocks. All transcribed information from audio and video streams together with time boundaries is indexed in the ElasticSearch database which can then be used to search for interesting keywords, entities etc. In this paper we present mainly the development and evaluation of the method for detection and identification of logos from images. We evaluate the logo detector on several of the most popular logo detection benchmarks, namely FlickrLogos-32, Logos-32plus, TopLogo-10 and QMUL-OpenLogo. The detector significantly outperforms the most common approach based on two stage models such as Faster R-CNN in terms of both speed and accuracy, achieving relative improvement up to 46% while running up to 2x faster.
Název v anglickém jazyce
Logo Detection and Identification in System for Audio-Visual Broadcast Transcription
Popis výsledku anglicky
We present logo detection and identification based on a single-stage deep convolutional detector, the Scaled YOLOv4. This method is used in our system for audio-visual broadcast transcription and indexing which can be employed mainly for transcription of TV programs, mostly sports and advertising blocks. All transcribed information from audio and video streams together with time boundaries is indexed in the ElasticSearch database which can then be used to search for interesting keywords, entities etc. In this paper we present mainly the development and evaluation of the method for detection and identification of logos from images. We evaluate the logo detector on several of the most popular logo detection benchmarks, namely FlickrLogos-32, Logos-32plus, TopLogo-10 and QMUL-OpenLogo. The detector significantly outperforms the most common approach based on two stage models such as Faster R-CNN in terms of both speed and accuracy, achieving relative improvement up to 46% while running up to 2x faster.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
44th International Conference on Telecommunications and Signal Processing
ISBN
978-166542933-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
357-360
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
on-line, Brno
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000701604600076