Audio-visual Broadcast Transcription System Using Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00009296" target="_blank" >RIV/46747885:24220/21:00009296 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9468830" target="_blank" >https://ieeexplore.ieee.org/document/9468830</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ECMSM51310.2021.9468830" target="_blank" >10.1109/ECMSM51310.2021.9468830</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Audio-visual Broadcast Transcription System Using Artificial Neural Networks
Popis výsledku v původním jazyce
In this paper, a new system for audio and visual TV broadcast News transcription is described. In the last few years, our system for audio-only broadcast transcription has been modified with the possibility of obtaining additional visual information, especially from TV video recordings. New extension modules and algorithms mainly for visual information extraction are described in this contribution. Combined Deep Neural Networks with Hidden Markov Models (DNN-HMM) are used for audio speech signal recognition. A classification of a relevant visual signal was based on Convolutional Neural Networks (CNN). There are the additional modules for detection and identification of human faces, TV logos, and company logos in the newly developed transcription system. Another module was designed for Optical Character Recognition (OCR) of text, which occurs mainly in video recordings of TV News very often. The whole audio-visual system for broadcast transcription was tested on a relatively big database (817 hours) which has been completely transcribed. The system also includes the possibility of intelligent search in transcribed data from audio and/or visual signals.
Název v anglickém jazyce
Audio-visual Broadcast Transcription System Using Artificial Neural Networks
Popis výsledku anglicky
In this paper, a new system for audio and visual TV broadcast News transcription is described. In the last few years, our system for audio-only broadcast transcription has been modified with the possibility of obtaining additional visual information, especially from TV video recordings. New extension modules and algorithms mainly for visual information extraction are described in this contribution. Combined Deep Neural Networks with Hidden Markov Models (DNN-HMM) are used for audio speech signal recognition. A classification of a relevant visual signal was based on Convolutional Neural Networks (CNN). There are the additional modules for detection and identification of human faces, TV logos, and company logos in the newly developed transcription system. Another module was designed for Optical Character Recognition (OCR) of text, which occurs mainly in video recordings of TV News very often. The whole audio-visual system for broadcast transcription was tested on a relatively big database (817 hours) which has been completely transcribed. The system also includes the possibility of intelligent search in transcribed data from audio and/or visual signals.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingvální technologie pro detekci a včasné upozornění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM 2021
ISBN
978-153861757-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Liberec, ČR
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—