On The Expediency and Possibilities of Approximating a Pure Delay Link
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F22%3A00009298" target="_blank" >RIV/46747885:24220/22:00009298 - isvavai.cz</a>
Výsledek na webu
<a href="http://proceedings.spiiras.nw.ru/index.php/sp/article/view/15095/15047" target="_blank" >http://proceedings.spiiras.nw.ru/index.php/sp/article/view/15095/15047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15622/ia.2022.21.2" target="_blank" >10.15622/ia.2022.21.2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On The Expediency and Possibilities of Approximating a Pure Delay Link
Popis výsledku v původním jazyce
This paper deals with control of object with delay. It is often necessary to approximate a pure delay link with a minimum phase delay. Many approximation methods are based on the Taylor series expansion and modified techniques. The most famous one is the Padé approximation method. However, the known approximation methods have significant drawbacks, which this paper reveals. Other methods of forming different filters can serve as a better approximation in determining the delay relationship, although they are not used for these purposes. In particular, methods of forming the desired differential equation of a locked-loop system of a given order by the method of numerical optimization are known. In this case, the locked-loop system behaves like a filter of the corresponding order, the numerator of which is equal to one, and the specified polynomial is in the denominator. Modeling has shown that such filter is an effective alternative approximation of the delay link and can be used for the same purposes for which it was supposed to use the Padé approximation. The polynomial coefficients in the literature were calculated only up to the 12th order. However, it is clear that the accuracy of the approximation depends on the order of the polynomial used.
Název v anglickém jazyce
On The Expediency and Possibilities of Approximating a Pure Delay Link
Popis výsledku anglicky
This paper deals with control of object with delay. It is often necessary to approximate a pure delay link with a minimum phase delay. Many approximation methods are based on the Taylor series expansion and modified techniques. The most famous one is the Padé approximation method. However, the known approximation methods have significant drawbacks, which this paper reveals. Other methods of forming different filters can serve as a better approximation in determining the delay relationship, although they are not used for these purposes. In particular, methods of forming the desired differential equation of a locked-loop system of a given order by the method of numerical optimization are known. In this case, the locked-loop system behaves like a filter of the corresponding order, the numerator of which is equal to one, and the specified polynomial is in the denominator. Modeling has shown that such filter is an effective alternative approximation of the delay link and can be used for the same purposes for which it was supposed to use the Padé approximation. The polynomial coefficients in the literature were calculated only up to the 12th order. However, it is clear that the accuracy of the approximation depends on the order of the polynomial used.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Informatics and Automation
ISSN
2713-3192
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
26
Strana od-do
41-67
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85125221233