Double Nonstationarity: Blind Extraction of Independent Nonstationary Vector/Component from Nonstationary Mixtures — Performance Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012404" target="_blank" >RIV/46747885:24220/24:00012404 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/24:00382260
Výsledek na webu
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2024/06/Double_non_stationarity___Analysis.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2024/06/Double_non_stationarity___Analysis.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2024.3407162" target="_blank" >10.1109/TSP.2024.3407162</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Double Nonstationarity: Blind Extraction of Independent Nonstationary Vector/Component from Nonstationary Mixtures — Performance Analysis
Popis výsledku v původním jazyce
Non-Gaussianity and non-stationarity are strong features on the basis of which blind source extraction (BSE) becomes a powerful signal processing tool. The recently proposed double nonstationarity model exploits both properties in the mixing and source models, which significantly broadens the class of identifiable signals. In this article, Craméer-Rao and performance analyses are presented, including the complex-valued case, non-circularity, joint extraction, and non-stationary mixing useful for moving source extraction. Besides identifiability conditions and achievable extraction accuracy, the results reveal the influence of a source model misspecification. Of particular interest is the case when the source of interest is Gaussian, which is not identifiable without taking into account source non-stationarity. The validity of the analyses is experimentally confirmed and compared with the empirical performance of the FastDIVA algorithm. It is shown that the closed-form expression obtained from the analysis can be used as information about the achieved interference-to-signal ratio without knowing the groundtruth signals.
Název v anglickém jazyce
Double Nonstationarity: Blind Extraction of Independent Nonstationary Vector/Component from Nonstationary Mixtures — Performance Analysis
Popis výsledku anglicky
Non-Gaussianity and non-stationarity are strong features on the basis of which blind source extraction (BSE) becomes a powerful signal processing tool. The recently proposed double nonstationarity model exploits both properties in the mixing and source models, which significantly broadens the class of identifiable signals. In this article, Craméer-Rao and performance analyses are presented, including the complex-valued case, non-circularity, joint extraction, and non-stationary mixing useful for moving source extraction. Besides identifiability conditions and achievable extraction accuracy, the results reveal the influence of a source model misspecification. Of particular interest is the case when the source of interest is Gaussian, which is not identifiable without taking into account source non-stationarity. The validity of the analyses is experimentally confirmed and compared with the empirical performance of the FastDIVA algorithm. It is shown that the closed-form expression obtained from the analysis can be used as information about the achieved interference-to-signal ratio without knowing the groundtruth signals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-17720S" target="_blank" >GA20-17720S: Pokročilé modely směsí pro slepou extrakci signálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
72
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
3228 - 3241
Kód UT WoS článku
001282373000014
EID výsledku v databázi Scopus
2-s2.0-85195425579