Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-targeting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F19%3A00006715" target="_blank" >RIV/46747885:24310/19:00006715 - isvavai.cz</a>
Výsledek na webu
<a href="http://xplorestaging.ieee.org/ielx7/6287639/8600701/08877755.pdf?arnumber=8877755" target="_blank" >http://xplorestaging.ieee.org/ielx7/6287639/8600701/08877755.pdf?arnumber=8877755</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/access.2019.2948401" target="_blank" >10.1109/access.2019.2948401</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-targeting
Popis výsledku v původním jazyce
Advertising systems and the algorithms they use are constantly evolving and expanding the possibilities for reaching potential customers. Hyper-targeting (also called micro targeting) is the use of detailed customer data and marketing automation to deliver highly targeted and personalized messages across a large number of channels. These campaigns are designed to appeal to specific people or small groups of customers. By using the ability to process large amounts of data through innovations such as predictive analytics, marketers can gain a deeper understanding of their audiences, focusing on specific accounts, and not the entire segments. This allegedly allows B2B brands to target customers directly and provide unique personal and highly relevant experience. However, the scientific evidence to support this claim is missing. Some previous studies even suggest the negative impact of highly personalized advertising content on user reactiveness and purchase behavior. In this article, we test the effects of different levels of personalized advertisements using the advanced campaign targeting tool called Facebook Lookalike audiences. Facebook Lookalike audiences work on the basis of the estimation of customer similarity based on the characteristics of a Custom audience, as defined by the advertiser. We examine the performance of various targeting settings using the data from 840 Facebook ads with different personalization level. These advertisements are compared in terms of reach, number of reactions, frequency of impressions, number of clicks, average time spent on a website, number of viewed pages, number of conversions, and profitability.
Název v anglickém jazyce
Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-targeting
Popis výsledku anglicky
Advertising systems and the algorithms they use are constantly evolving and expanding the possibilities for reaching potential customers. Hyper-targeting (also called micro targeting) is the use of detailed customer data and marketing automation to deliver highly targeted and personalized messages across a large number of channels. These campaigns are designed to appeal to specific people or small groups of customers. By using the ability to process large amounts of data through innovations such as predictive analytics, marketers can gain a deeper understanding of their audiences, focusing on specific accounts, and not the entire segments. This allegedly allows B2B brands to target customers directly and provide unique personal and highly relevant experience. However, the scientific evidence to support this claim is missing. Some previous studies even suggest the negative impact of highly personalized advertising content on user reactiveness and purchase behavior. In this article, we test the effects of different levels of personalized advertisements using the advanced campaign targeting tool called Facebook Lookalike audiences. Facebook Lookalike audiences work on the basis of the estimation of customer similarity based on the characteristics of a Custom audience, as defined by the advertiser. We examine the performance of various targeting settings using the data from 840 Facebook ads with different personalization level. These advertisements are compared in terms of reach, number of reactions, frequency of impressions, number of clicks, average time spent on a website, number of viewed pages, number of conversions, and profitability.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/TJ02000206" target="_blank" >TJ02000206: Rozvoj dovedností nezbytných pro digitální transformaci podnikání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
prosinec
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
153365-153377
Kód UT WoS článku
000497163000238
EID výsledku v databázi Scopus
2-s2.0-85078331011