Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-targeting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F19%3A00006715" target="_blank" >RIV/46747885:24310/19:00006715 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://xplorestaging.ieee.org/ielx7/6287639/8600701/08877755.pdf?arnumber=8877755" target="_blank" >http://xplorestaging.ieee.org/ielx7/6287639/8600701/08877755.pdf?arnumber=8877755</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/access.2019.2948401" target="_blank" >10.1109/access.2019.2948401</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-targeting

  • Popis výsledku v původním jazyce

    Advertising systems and the algorithms they use are constantly evolving and expanding the possibilities for reaching potential customers. Hyper-targeting (also called micro targeting) is the use of detailed customer data and marketing automation to deliver highly targeted and personalized messages across a large number of channels. These campaigns are designed to appeal to specific people or small groups of customers. By using the ability to process large amounts of data through innovations such as predictive analytics, marketers can gain a deeper understanding of their audiences, focusing on specific accounts, and not the entire segments. This allegedly allows B2B brands to target customers directly and provide unique personal and highly relevant experience. However, the scientific evidence to support this claim is missing. Some previous studies even suggest the negative impact of highly personalized advertising content on user reactiveness and purchase behavior. In this article, we test the effects of different levels of personalized advertisements using the advanced campaign targeting tool called Facebook Lookalike audiences. Facebook Lookalike audiences work on the basis of the estimation of customer similarity based on the characteristics of a Custom audience, as defined by the advertiser. We examine the performance of various targeting settings using the data from 840 Facebook ads with different personalization level. These advertisements are compared in terms of reach, number of reactions, frequency of impressions, number of clicks, average time spent on a website, number of viewed pages, number of conversions, and profitability.

  • Název v anglickém jazyce

    Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-targeting

  • Popis výsledku anglicky

    Advertising systems and the algorithms they use are constantly evolving and expanding the possibilities for reaching potential customers. Hyper-targeting (also called micro targeting) is the use of detailed customer data and marketing automation to deliver highly targeted and personalized messages across a large number of channels. These campaigns are designed to appeal to specific people or small groups of customers. By using the ability to process large amounts of data through innovations such as predictive analytics, marketers can gain a deeper understanding of their audiences, focusing on specific accounts, and not the entire segments. This allegedly allows B2B brands to target customers directly and provide unique personal and highly relevant experience. However, the scientific evidence to support this claim is missing. Some previous studies even suggest the negative impact of highly personalized advertising content on user reactiveness and purchase behavior. In this article, we test the effects of different levels of personalized advertisements using the advanced campaign targeting tool called Facebook Lookalike audiences. Facebook Lookalike audiences work on the basis of the estimation of customer similarity based on the characteristics of a Custom audience, as defined by the advertiser. We examine the performance of various targeting settings using the data from 840 Facebook ads with different personalization level. These advertisements are compared in terms of reach, number of reactions, frequency of impressions, number of clicks, average time spent on a website, number of viewed pages, number of conversions, and profitability.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TJ02000206" target="_blank" >TJ02000206: Rozvoj dovedností nezbytných pro digitální transformaci podnikání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    prosinec

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    153365-153377

  • Kód UT WoS článku

    000497163000238

  • EID výsledku v databázi Scopus

    2-s2.0-85078331011