Information Retrieval System for IT Service Desk for Production Line Workers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F21%3A00008910" target="_blank" >RIV/46747885:24310/21:00008910 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2021.v2.czu.cz/en/r-16791-news-mme-2021/proceedings-of-the-39-th-international-conference-on-mme-202.html" target="_blank" >https://mme2021.v2.czu.cz/en/r-16791-news-mme-2021/proceedings-of-the-39-th-international-conference-on-mme-202.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information Retrieval System for IT Service Desk for Production Line Workers
Popis výsledku v původním jazyce
The information retrieval system gets answers to its users’ questions. As a part of an IT service desk available for the workers at the production line it recognizes a spoken request and selects a proper answer or action for this request. Speech recognition done at the beginning of the process and presentation of the selected answer done in the end of the process is solved using freely available modules for speech recognition and text to speech. The subject of the presented research is the process of selecting answers to recognized questions. The software solving this process is done by the authors of this contribution. The main result of the research is the comparison of two approaches of selecting answers to questions, namely decision tree and neural network. The input of both approaches is the set of keywords recognized in the user’s speech. Due to the lack of real data from a real production line, the training set of keywords and correct answers is generated artificially. The result of the research shows that the neural solution is advantageous when the number of possible answers and the number of keywords in questions is high.
Název v anglickém jazyce
Information Retrieval System for IT Service Desk for Production Line Workers
Popis výsledku anglicky
The information retrieval system gets answers to its users’ questions. As a part of an IT service desk available for the workers at the production line it recognizes a spoken request and selects a proper answer or action for this request. Speech recognition done at the beginning of the process and presentation of the selected answer done in the end of the process is solved using freely available modules for speech recognition and text to speech. The subject of the presented research is the process of selecting answers to recognized questions. The software solving this process is done by the authors of this contribution. The main result of the research is the comparison of two approaches of selecting answers to questions, namely decision tree and neural network. The input of both approaches is the set of keywords recognized in the user’s speech. Due to the lack of real data from a real production line, the training set of keywords and correct answers is generated artificially. The result of the research shows that the neural solution is advantageous when the number of possible answers and the number of keywords in questions is high.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
39th International Conference on Mathematical Methods in Economics (MME 2021) Conference Proceedings
ISBN
978-80-213-3126-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
349-354
Název nakladatele
Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Czech Republic
Místo vydání
Prague, Czech Republic
Místo konání akce
Czech University of Life Sciences Prague, Kamýck
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000936369700057