Data - Based Agricultural Business Continuity Management Policies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F22%3A00008229" target="_blank" >RIV/46747885:24310/22:00008229 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-84148-5_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-84148-5_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-84148-5_9" target="_blank" >10.1007/978-3-030-84148-5_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data - Based Agricultural Business Continuity Management Policies
Popis výsledku v původním jazyce
Data-driven decisions are crucial for modern enterprises regardless of the sector in which they operate. In agriculture, data processing, storage and manipulation are crucial for boosting agricultural productivity. Nevertheless, the reliance of modern agriculture on information technologies has triggered a great concern regarding the exposure of agricultural processes to various threats that can cause unexpected interruptions. Business continuity deals with these types of threats. Data collection, storage and processing which can be effectively implemented by modern business intelligence systems can undoubtedly help modern agricultural enterprises implement standard business continuity policies. The present chapter introduces a novel multidimensional approach for facilitating effective data-based business continuity management policies in agriculture. The approach relies on realistic business continuity data from two agrarian industries that are used for the design of two business intelligence multidimensional schemas which facilitate decisions based on descriptive data and for conducting data mining predictions. Examples of descriptive data-based decision making processes are depicted using business process modeling notation tools and the predictive decisions are conducted via machine learning classifiers. In this way, agricultural business continuity experts in collaboration with agronomists, researchers and farmers can be motivated to apply fully data driven agricultural business continuity policies in specific agricultural companies.
Název v anglickém jazyce
Data - Based Agricultural Business Continuity Management Policies
Popis výsledku anglicky
Data-driven decisions are crucial for modern enterprises regardless of the sector in which they operate. In agriculture, data processing, storage and manipulation are crucial for boosting agricultural productivity. Nevertheless, the reliance of modern agriculture on information technologies has triggered a great concern regarding the exposure of agricultural processes to various threats that can cause unexpected interruptions. Business continuity deals with these types of threats. Data collection, storage and processing which can be effectively implemented by modern business intelligence systems can undoubtedly help modern agricultural enterprises implement standard business continuity policies. The present chapter introduces a novel multidimensional approach for facilitating effective data-based business continuity management policies in agriculture. The approach relies on realistic business continuity data from two agrarian industries that are used for the design of two business intelligence multidimensional schemas which facilitate decisions based on descriptive data and for conducting data mining predictions. Examples of descriptive data-based decision making processes are depicted using business process modeling notation tools and the predictive decisions are conducted via machine learning classifiers. In this way, agricultural business continuity experts in collaboration with agronomists, researchers and farmers can be motivated to apply fully data driven agricultural business continuity policies in specific agricultural companies.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and its Applications, Vol. 183
ISBN
978-3-030-84147-8
Počet stran výsledku
25
Strana od-do
209-233
Počet stran knihy
288
Název nakladatele
Springer Nature
Místo vydání
Cham
Kód UT WoS kapitoly
—