Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data - Based Agricultural Business Continuity Management Policies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F22%3A00008229" target="_blank" >RIV/46747885:24310/22:00008229 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-84148-5_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-84148-5_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-84148-5_9" target="_blank" >10.1007/978-3-030-84148-5_9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data - Based Agricultural Business Continuity Management Policies

  • Popis výsledku v původním jazyce

    Data-driven decisions are crucial for modern enterprises regardless of the sector in which they operate. In agriculture, data processing, storage and manipulation are crucial for boosting agricultural productivity. Nevertheless, the reliance of modern agriculture on information technologies has triggered a great concern regarding the exposure of agricultural processes to various threats that can cause unexpected interruptions. Business continuity deals with these types of threats. Data collection, storage and processing which can be effectively implemented by modern business intelligence systems can undoubtedly help modern agricultural enterprises implement standard business continuity policies. The present chapter introduces a novel multidimensional approach for facilitating effective data-based business continuity management policies in agriculture. The approach relies on realistic business continuity data from two agrarian industries that are used for the design of two business intelligence multidimensional schemas which facilitate decisions based on descriptive data and for conducting data mining predictions. Examples of descriptive data-based decision making processes are depicted using business process modeling notation tools and the predictive decisions are conducted via machine learning classifiers. In this way, agricultural business continuity experts in collaboration with agronomists, researchers and farmers can be motivated to apply fully data driven agricultural business continuity policies in specific agricultural companies.

  • Název v anglickém jazyce

    Data - Based Agricultural Business Continuity Management Policies

  • Popis výsledku anglicky

    Data-driven decisions are crucial for modern enterprises regardless of the sector in which they operate. In agriculture, data processing, storage and manipulation are crucial for boosting agricultural productivity. Nevertheless, the reliance of modern agriculture on information technologies has triggered a great concern regarding the exposure of agricultural processes to various threats that can cause unexpected interruptions. Business continuity deals with these types of threats. Data collection, storage and processing which can be effectively implemented by modern business intelligence systems can undoubtedly help modern agricultural enterprises implement standard business continuity policies. The present chapter introduces a novel multidimensional approach for facilitating effective data-based business continuity management policies in agriculture. The approach relies on realistic business continuity data from two agrarian industries that are used for the design of two business intelligence multidimensional schemas which facilitate decisions based on descriptive data and for conducting data mining predictions. Examples of descriptive data-based decision making processes are depicted using business process modeling notation tools and the predictive decisions are conducted via machine learning classifiers. In this way, agricultural business continuity experts in collaboration with agronomists, researchers and farmers can be motivated to apply fully data driven agricultural business continuity policies in specific agricultural companies.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and its Applications, Vol. 183

  • ISBN

    978-3-030-84147-8

  • Počet stran výsledku

    25

  • Strana od-do

    209-233

  • Počet stran knihy

    288

  • Název nakladatele

    Springer Nature

  • Místo vydání

    Cham

  • Kód UT WoS kapitoly