Speeding Up Past Stock Movement Simulation in Sporadic Demand Inventory Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F23%3A00010879" target="_blank" >RIV/46747885:24310/23:00010879 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ijsimm.com/Full_Papers/Fulltext2023/text22-1_627.pdf" target="_blank" >http://www.ijsimm.com/Full_Papers/Fulltext2023/text22-1_627.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/IJSIMM22-1-627" target="_blank" >10.2507/IJSIMM22-1-627</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speeding Up Past Stock Movement Simulation in Sporadic Demand Inventory Control
Popis výsledku v původním jazyce
This paper is aimed at speeding up past stock movement simulation in sporadic demand inventory control making it more suitable to deal with large scale real life problems connected for example with stock management of spare parts used in the maintenance of production equipment. Thus, in continuous review, fixed order quantity inventory control policy, we suggest reducing number of simulated combinations of reorder point and replenishment order quantity replacing all combinations search with the local search. The local search is based on minimal and maximal reorder point coming from linear regression and bootstrapping. When simulating randomly generated intermittent data with increasing nonzero demand quantities the significant savings of computational time are reached while bringing up to 50 % of simulated timeseries to reach the best possible holding and ordering costs and another 40 % to reach the maximal deterioration of these costs up to 15 %. Upgraded simulation represents efficient, data driven and assumptions free approach to the sporadic demand stock management outperforming individual application of parametric forecasting methods.
Název v anglickém jazyce
Speeding Up Past Stock Movement Simulation in Sporadic Demand Inventory Control
Popis výsledku anglicky
This paper is aimed at speeding up past stock movement simulation in sporadic demand inventory control making it more suitable to deal with large scale real life problems connected for example with stock management of spare parts used in the maintenance of production equipment. Thus, in continuous review, fixed order quantity inventory control policy, we suggest reducing number of simulated combinations of reorder point and replenishment order quantity replacing all combinations search with the local search. The local search is based on minimal and maximal reorder point coming from linear regression and bootstrapping. When simulating randomly generated intermittent data with increasing nonzero demand quantities the significant savings of computational time are reached while bringing up to 50 % of simulated timeseries to reach the best possible holding and ordering costs and another 40 % to reach the maximal deterioration of these costs up to 15 %. Upgraded simulation represents efficient, data driven and assumptions free approach to the sporadic demand stock management outperforming individual application of parametric forecasting methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Simulation Modelling
ISSN
1726-4529
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
11
Strana od-do
41-51
Kód UT WoS článku
000983931000004
EID výsledku v databázi Scopus
2-s2.0-85150355231