How discretization affects intermittent demand stock management based on simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F23%3A00011493" target="_blank" >RIV/46747885:24310/23:00011493 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ijsimm.com/Full_Papers/Fulltext2023/text22-4_660.pdf" target="_blank" >https://www.ijsimm.com/Full_Papers/Fulltext2023/text22-4_660.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/IJSIMM22-4-660" target="_blank" >10.2507/IJSIMM22-4-660</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How discretization affects intermittent demand stock management based on simulation
Popis výsledku v původním jazyce
This paper is aimed at the development of an alternative combinatorial strategy of reducing searched solution space in intermittent demand stock management based on the past stock movement simulation. The combinatorial strategy involves an adjustable level of the discretization of control variables that are used within a selected inventory control policy. We combine this new strategy with the local search employing linear regression and bootstrapping to bound the reorder point and simulate (Q, R) inventory control policy using randomly generated data. The data is characteristic with an increasing intermittency and a non-zero demand variability. The outputs from simulation experiments show that combining two different strategies of reducing searched solution space brings a significant improvement in the trade-off among the minimal holding and ordering costs, required service level and the consumption of the computational time making the past stock movement simulation to be more applicable in extensive real life tasks.
Název v anglickém jazyce
How discretization affects intermittent demand stock management based on simulation
Popis výsledku anglicky
This paper is aimed at the development of an alternative combinatorial strategy of reducing searched solution space in intermittent demand stock management based on the past stock movement simulation. The combinatorial strategy involves an adjustable level of the discretization of control variables that are used within a selected inventory control policy. We combine this new strategy with the local search employing linear regression and bootstrapping to bound the reorder point and simulate (Q, R) inventory control policy using randomly generated data. The data is characteristic with an increasing intermittency and a non-zero demand variability. The outputs from simulation experiments show that combining two different strategies of reducing searched solution space brings a significant improvement in the trade-off among the minimal holding and ordering costs, required service level and the consumption of the computational time making the past stock movement simulation to be more applicable in extensive real life tasks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Simulation Modelling
ISSN
1726-4529
e-ISSN
—
Svazek periodika
vol. 22
Číslo periodika v rámci svazku
no. 4
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
12
Strana od-do
598-609
Kód UT WoS článku
001129017600003
EID výsledku v databázi Scopus
2-s2.0-85180428399