SiDiTeR: Similarity Discovering Techniques for Robotic Process Automation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F23%3A00011256" target="_blank" >RIV/46747885:24310/23:00011256 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-43433-4_7" target="_blank" >https://doi.org/10.1007/978-3-031-43433-4_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43433-4_7" target="_blank" >10.1007/978-3-031-43433-4_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SiDiTeR: Similarity Discovering Techniques for Robotic Process Automation
Popis výsledku v původním jazyce
Robotic Process Automation (RPA) has gained widespread adoption in corporate organizations, streamlining work processes while also introducing additional maintenance tasks. Effective governance of RPA can be achieved through the reusability of RPA components. However, refactoring RPA processes poses challenges when dealing with larger development teams, outsourcing, and staff turnover. This research aims to explore the possibility of identifying similarities in RPA processes for refactoring. To address this issue, we have developed Similarity Discovering Techniques for RPA (SiDiTeR). SiDiTeR utilizes source code or process logs from RPA automations to search for similar or identical parts within RPA processes. The techniques introduced are specifically tailored to the RPA domain. We have expanded the potential matches by introducing a dictionary feature which helps identify different activities that produce the same output, and this has led to improved results in the RPA domain. Through our analysis, we have discovered 655 matches across 156 processes, with the longest match spanning 163 occurrences in 15 processes. Process similarity within the RPA domain proves to be aviable solution for mitigating the maintenance burden associated with RPA. This underscores the significance of process similarity in the RPA domain.
Název v anglickém jazyce
SiDiTeR: Similarity Discovering Techniques for Robotic Process Automation
Popis výsledku anglicky
Robotic Process Automation (RPA) has gained widespread adoption in corporate organizations, streamlining work processes while also introducing additional maintenance tasks. Effective governance of RPA can be achieved through the reusability of RPA components. However, refactoring RPA processes poses challenges when dealing with larger development teams, outsourcing, and staff turnover. This research aims to explore the possibility of identifying similarities in RPA processes for refactoring. To address this issue, we have developed Similarity Discovering Techniques for RPA (SiDiTeR). SiDiTeR utilizes source code or process logs from RPA automations to search for similar or identical parts within RPA processes. The techniques introduced are specifically tailored to the RPA domain. We have expanded the potential matches by introducing a dictionary feature which helps identify different activities that produce the same output, and this has led to improved results in the RPA domain. Through our analysis, we have discovered 655 matches across 156 processes, with the longest match spanning 163 occurrences in 15 processes. Process similarity within the RPA domain proves to be aviable solution for mitigating the maintenance burden associated with RPA. This underscores the significance of process similarity in the RPA domain.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Business Information Processing
ISBN
—
ISSN
1865-1348
e-ISSN
—
Počet stran výsledku
14
Strana od-do
106-119
Název nakladatele
Springer Nature Switzerland
Místo vydání
—
Místo konání akce
Utrecht
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001278532800007