Towards Discovering Erratic Behavior in Robotic Process Automation with Statistical Process Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F24%3A00010288" target="_blank" >RIV/46747885:24310/24:00010288 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10257-024-00686-y" target="_blank" >https://link.springer.com/article/10.1007/s10257-024-00686-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10257-024-00686-y" target="_blank" >10.1007/s10257-024-00686-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Discovering Erratic Behavior in Robotic Process Automation with Statistical Process Control
Popis výsledku v původním jazyce
Companies that use robotic process automation very often deal with problems maintaining the bots in their RPA portfolio. Current key performance indicators do not track the behavior of RPA bots or processes. For better maintainability of RPA bots, it is crucial to easily identify problematic behavior in RPA bots. Therefore, we propose a strategy that tracks and measures the behavior of processes to increase the maintainability of RPA bots. We selected indicators of statistical dispersion for measuring variability to analyze the behavior of RPA bots. We analyzed how well statistical dispersion can describe the behavior of RPA bots on 12 processes. The results provide evidence that, by using statistical dispersion for behavioral analysis, the unwanted behavior of RPA bots can be described. Our results showed that statistical dispersion can describe the success rate with a correlation of -0.91 and outliers in the data with a correlation of 0.42. This research implies that we can describe the behavior of RPA bots with variable analysis. Furthermore, with high probability, it can also be used for analyzing other processes, as a tool for gaining insights into performance and as a benchmark tool for comparing or selecting a process to rework.
Název v anglickém jazyce
Towards Discovering Erratic Behavior in Robotic Process Automation with Statistical Process Control
Popis výsledku anglicky
Companies that use robotic process automation very often deal with problems maintaining the bots in their RPA portfolio. Current key performance indicators do not track the behavior of RPA bots or processes. For better maintainability of RPA bots, it is crucial to easily identify problematic behavior in RPA bots. Therefore, we propose a strategy that tracks and measures the behavior of processes to increase the maintainability of RPA bots. We selected indicators of statistical dispersion for measuring variability to analyze the behavior of RPA bots. We analyzed how well statistical dispersion can describe the behavior of RPA bots on 12 processes. The results provide evidence that, by using statistical dispersion for behavioral analysis, the unwanted behavior of RPA bots can be described. Our results showed that statistical dispersion can describe the success rate with a correlation of -0.91 and outliers in the data with a correlation of 0.42. This research implies that we can describe the behavior of RPA bots with variable analysis. Furthermore, with high probability, it can also be used for analyzing other processes, as a tool for gaining insights into performance and as a benchmark tool for comparing or selecting a process to rework.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Systems and e-Business Management
ISSN
1617-9846
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
741-758
Kód UT WoS článku
001302270100001
EID výsledku v databázi Scopus
2-s2.0-85202747335