An Automated Fabric Fault Detection and Classification System Based on Computer Vision and Soft Computing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F13%3A%230003701" target="_blank" >RIV/46747885:24410/13:#0003701 - isvavai.cz</a>
Výsledek na webu
<a href="http://acc-ern.tul.cz/images/journal/sbornik/ACC-Journal_1-2013.pdf" target="_blank" >http://acc-ern.tul.cz/images/journal/sbornik/ACC-Journal_1-2013.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Automated Fabric Fault Detection and Classification System Based on Computer Vision and Soft Computing
Popis výsledku v původním jazyce
Fabric inspection is one of the essential quality control processes in weaving mills. The automation of this process using computer vision systems is expected to increase the efficiency of the process and increase the total profit revenues on the long run. This work introduces a computer vision system that has the capability to detect and classify a relatively large number of fabric defects. Image enhancement techniques were used in processing the fabric acquired images. Spatial and spectral features were extracted from the processed images and used as inputs to soft-computing classifiers. Two approaches were used in the classification with the aim of reducing the calculation time required during the image analysis. The successful classification rate was 97.3% using the direct approach that has a slightly longer processing time. The performance of the classifiers in the series approach ranges between 91 to 100% depending on the classification level and the used image features. Results
Název v anglickém jazyce
An Automated Fabric Fault Detection and Classification System Based on Computer Vision and Soft Computing
Popis výsledku anglicky
Fabric inspection is one of the essential quality control processes in weaving mills. The automation of this process using computer vision systems is expected to increase the efficiency of the process and increase the total profit revenues on the long run. This work introduces a computer vision system that has the capability to detect and classify a relatively large number of fabric defects. Image enhancement techniques were used in processing the fabric acquired images. Spatial and spectral features were extracted from the processed images and used as inputs to soft-computing classifiers. Two approaches were used in the classification with the aim of reducing the calculation time required during the image analysis. The successful classification rate was 97.3% using the direct approach that has a slightly longer processing time. The performance of the classifiers in the series approach ranges between 91 to 100% depending on the classification level and the used image features. Results
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JS - Řízení spolehlivosti a kvality, zkušebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACC Journal
ISSN
1803-9782
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
A
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
16-24
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—