An Automated System for Fabric Faults Inspection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F17%3A00004278" target="_blank" >RIV/46747885:24410/17:00004278 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.amazon.com/Automated-System-Fabric-Faults-Inspection/dp/3330842628" target="_blank" >http://www.amazon.com/Automated-System-Fabric-Faults-Inspection/dp/3330842628</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Automated System for Fabric Faults Inspection
Popis výsledku v původním jazyce
This work utilizes a digital camera to acquire and transmit fabric images to a computer which enhances and extracts the features for each image.Then, the features are processed using Artificial Intelligence technique to detect and classify if the fabric has a defect or not and classify 10 fabric defects. Two approaches have been used for classification using statistical features only, spectral features only or both. The first approach classifies all the defects in one step. The results show that using both statistical and spectral features with each other give a 95.5% correct classification. The second approach classifies the defect on three steps.The first step classifies if the fabric sample has a defect or free defect. The results show that statistical features get the best classification with the least time with 91% percentage. The second step classifies the direction of the defect; Area, Warp or weft. The use of both features results, a 95.5% classification rate. The third step classifies the defect. For the area defects, Fourier features get a 100% classification. While using statistical features results a 100% correct classification for warp and weft defects.
Název v anglickém jazyce
An Automated System for Fabric Faults Inspection
Popis výsledku anglicky
This work utilizes a digital camera to acquire and transmit fabric images to a computer which enhances and extracts the features for each image.Then, the features are processed using Artificial Intelligence technique to detect and classify if the fabric has a defect or not and classify 10 fabric defects. Two approaches have been used for classification using statistical features only, spectral features only or both. The first approach classifies all the defects in one step. The results show that using both statistical and spectral features with each other give a 95.5% correct classification. The second approach classifies the defect on three steps.The first step classifies if the fabric sample has a defect or free defect. The results show that statistical features get the best classification with the least time with 91% percentage. The second step classifies the direction of the defect; Area, Warp or weft. The use of both features results, a 95.5% classification rate. The third step classifies the defect. For the area defects, Fourier features get a 100% classification. While using statistical features results a 100% correct classification for warp and weft defects.
Klasifikace
Druh
B - Odborná kniha
CEP obor
—
OECD FORD obor
20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1201" target="_blank" >LO1201: ROZVOJ ÚSTAVU PRO NANOMATERIÁLY, POKROČILÉ TECHNOLOGIE A INOVACE TECHNICKÉ UNIVERZITY V LIBERCI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
9783330842625
Počet stran knihy
164
Název nakladatele
Noor Publishing
Místo vydání
Germany
Kód UT WoS knihy
—