Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Application of Principal Component Analysis to Boost The Performance of The Automated Fabric Fault Detector And Classifier

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F14%3A%230003698" target="_blank" >RIV/46747885:24410/14:#0003698 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fibtex.lodz.pl/2014/4/51.pdf" target="_blank" >http://www.fibtex.lodz.pl/2014/4/51.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Application of Principal Component Analysis to Boost The Performance of The Automated Fabric Fault Detector And Classifier

  • Popis výsledku v původním jazyce

    There is a growing need to replace visual fabric inspection with automated systems that detect and classify fabric defects. The digital processing of fabric images utilises different methods that offer a large set of image features. The correlation between those features lead to problems during fabric fault classification and reduces the performance of the classifiers. This work extracted a combination of statistical (spatial) and Fourier transform (spectral) features from fabric images of the most frequent faults. Principal component analysis (PCA) was implemented to reduce the dimensionality of the input feature dataset, which achieved a reduction to 36% of the original data size while preserving 99% of information in the original dataset. The features processed using the PCA were fed to an artificial neural network (ANN) to classify the fault categories and then compared to another ANN that worked with the whole feature dataset. The performance of the network that was implemented af

  • Název v anglickém jazyce

    The Application of Principal Component Analysis to Boost The Performance of The Automated Fabric Fault Detector And Classifier

  • Popis výsledku anglicky

    There is a growing need to replace visual fabric inspection with automated systems that detect and classify fabric defects. The digital processing of fabric images utilises different methods that offer a large set of image features. The correlation between those features lead to problems during fabric fault classification and reduces the performance of the classifiers. This work extracted a combination of statistical (spatial) and Fourier transform (spectral) features from fabric images of the most frequent faults. Principal component analysis (PCA) was implemented to reduce the dimensionality of the input feature dataset, which achieved a reduction to 36% of the original data size while preserving 99% of information in the original dataset. The features processed using the PCA were fed to an artificial neural network (ANN) to classify the fault categories and then compared to another ANN that worked with the whole feature dataset. The performance of the network that was implemented af

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JS - Řízení spolehlivosti a kvality, zkušebnictví

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EE2.3.30.0065" target="_blank" >EE2.3.30.0065: Podpora tvorby excelentních výzkumných a vývojových týmů na Technické univerzitě v Liberci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fibres & Textiles in Eastern Europe

  • ISSN

    1230-3666

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    7

  • Strana od-do

    51-57

  • Kód UT WoS článku

    000338825300008

  • EID výsledku v databázi Scopus