Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP - EffUnet Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50019409" target="_blank" >RIV/62690094:18470/21:50019409 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-90885-0_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-90885-0_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-90885-0_17" target="_blank" >10.1007/978-3-030-90885-0_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP - EffUnet Classification
Popis výsledku v původním jazyce
Main problem in current research area focused on generating automatic AI technique to detect bio medical images by slimming the dataset. Reducing the original dataset with actual unwanted noises can accelerate new data which helps to detect diseases with high accuracy. Highest level of accuracy can be achieved only by ensuring accuracy at each level of processing steps. Dataset slimming or reduction is NP hard problems due its resembling variants. In this research work we ensure high accuracy in two phases. In phase one feature selection using Normalized Tensor Tubal PCA (NTT-PCA) method is used. This method is based on tensor with single value decomposition (SVD) for accurate dimensionality reduction problems. The dimensionality reduced output from phase one is further processed for accurate classification in phase two. The classification of affected images is detected using ASPP - EffUnet. The atrous spatial pyramid pooling (ASPP) with efficient convolutional block in Unet is combined to provide ASPP - EffUnet CNN architecture for accurate classification. This two phase model is designed and implemented on benchmark datasets of glaucoma detection. It is processed efficiently by exploiting fundus image in the dataset. We propose novel AI techniques for segmenting the eye discs using EffUnet and perform classification using ASPP-EffUnet techniques. Highest accuracy is achieved by NTT-PCA dimensionality reduction process and ASPP-EffUnet based classification which detects the boundaries of eye cup and optical discs very curiously. Our resulting algorithm "NTT-PCA with ASPP-EffUnet "for dimensionality reduction and classification process which is optimized for reducing computational complexity with existing detection algorithms like PCA-LA-SVM,PCA-ResNet ASPP -Unet. We choose benchmark datasets ORIGA for our experimental analysis. The crucial areas in clinical setup are examined and implemented successfully. The prediction and classification accuracy of proposed technique is achieved nearly 100%.
Název v anglickém jazyce
Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP - EffUnet Classification
Popis výsledku anglicky
Main problem in current research area focused on generating automatic AI technique to detect bio medical images by slimming the dataset. Reducing the original dataset with actual unwanted noises can accelerate new data which helps to detect diseases with high accuracy. Highest level of accuracy can be achieved only by ensuring accuracy at each level of processing steps. Dataset slimming or reduction is NP hard problems due its resembling variants. In this research work we ensure high accuracy in two phases. In phase one feature selection using Normalized Tensor Tubal PCA (NTT-PCA) method is used. This method is based on tensor with single value decomposition (SVD) for accurate dimensionality reduction problems. The dimensionality reduced output from phase one is further processed for accurate classification in phase two. The classification of affected images is detected using ASPP - EffUnet. The atrous spatial pyramid pooling (ASPP) with efficient convolutional block in Unet is combined to provide ASPP - EffUnet CNN architecture for accurate classification. This two phase model is designed and implemented on benchmark datasets of glaucoma detection. It is processed efficiently by exploiting fundus image in the dataset. We propose novel AI techniques for segmenting the eye discs using EffUnet and perform classification using ASPP-EffUnet techniques. Highest accuracy is achieved by NTT-PCA dimensionality reduction process and ASPP-EffUnet based classification which detects the boundaries of eye cup and optical discs very curiously. Our resulting algorithm "NTT-PCA with ASPP-EffUnet "for dimensionality reduction and classification process which is optimized for reducing computational complexity with existing detection algorithms like PCA-LA-SVM,PCA-ResNet ASPP -Unet. We choose benchmark datasets ORIGA for our experimental analysis. The crucial areas in clinical setup are examined and implemented successfully. The prediction and classification accuracy of proposed technique is achieved nearly 100%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
HEALTH INFORMATION SCIENCE, HIS 2021
ISBN
978-3-030-90885-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
181-192
Název nakladatele
SPRINGER-VERLAG BERLIN
Místo vydání
Berlín
Místo konání akce
Melbourne
Datum konání akce
25. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000758752400017