Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP - EffUnet Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50019409" target="_blank" >RIV/62690094:18470/21:50019409 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-90885-0_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-90885-0_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-90885-0_17" target="_blank" >10.1007/978-3-030-90885-0_17</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP - EffUnet Classification

  • Popis výsledku v původním jazyce

    Main problem in current research area focused on generating automatic AI technique to detect bio medical images by slimming the dataset. Reducing the original dataset with actual unwanted noises can accelerate new data which helps to detect diseases with high accuracy. Highest level of accuracy can be achieved only by ensuring accuracy at each level of processing steps. Dataset slimming or reduction is NP hard problems due its resembling variants. In this research work we ensure high accuracy in two phases. In phase one feature selection using Normalized Tensor Tubal PCA (NTT-PCA) method is used. This method is based on tensor with single value decomposition (SVD) for accurate dimensionality reduction problems. The dimensionality reduced output from phase one is further processed for accurate classification in phase two. The classification of affected images is detected using ASPP - EffUnet. The atrous spatial pyramid pooling (ASPP) with efficient convolutional block in Unet is combined to provide ASPP - EffUnet CNN architecture for accurate classification. This two phase model is designed and implemented on benchmark datasets of glaucoma detection. It is processed efficiently by exploiting fundus image in the dataset. We propose novel AI techniques for segmenting the eye discs using EffUnet and perform classification using ASPP-EffUnet techniques. Highest accuracy is achieved by NTT-PCA dimensionality reduction process and ASPP-EffUnet based classification which detects the boundaries of eye cup and optical discs very curiously. Our resulting algorithm &quot;NTT-PCA with ASPP-EffUnet &quot;for dimensionality reduction and classification process which is optimized for reducing computational complexity with existing detection algorithms like PCA-LA-SVM,PCA-ResNet ASPP -Unet. We choose benchmark datasets ORIGA for our experimental analysis. The crucial areas in clinical setup are examined and implemented successfully. The prediction and classification accuracy of proposed technique is achieved nearly 100%.

  • Název v anglickém jazyce

    Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP - EffUnet Classification

  • Popis výsledku anglicky

    Main problem in current research area focused on generating automatic AI technique to detect bio medical images by slimming the dataset. Reducing the original dataset with actual unwanted noises can accelerate new data which helps to detect diseases with high accuracy. Highest level of accuracy can be achieved only by ensuring accuracy at each level of processing steps. Dataset slimming or reduction is NP hard problems due its resembling variants. In this research work we ensure high accuracy in two phases. In phase one feature selection using Normalized Tensor Tubal PCA (NTT-PCA) method is used. This method is based on tensor with single value decomposition (SVD) for accurate dimensionality reduction problems. The dimensionality reduced output from phase one is further processed for accurate classification in phase two. The classification of affected images is detected using ASPP - EffUnet. The atrous spatial pyramid pooling (ASPP) with efficient convolutional block in Unet is combined to provide ASPP - EffUnet CNN architecture for accurate classification. This two phase model is designed and implemented on benchmark datasets of glaucoma detection. It is processed efficiently by exploiting fundus image in the dataset. We propose novel AI techniques for segmenting the eye discs using EffUnet and perform classification using ASPP-EffUnet techniques. Highest accuracy is achieved by NTT-PCA dimensionality reduction process and ASPP-EffUnet based classification which detects the boundaries of eye cup and optical discs very curiously. Our resulting algorithm &quot;NTT-PCA with ASPP-EffUnet &quot;for dimensionality reduction and classification process which is optimized for reducing computational complexity with existing detection algorithms like PCA-LA-SVM,PCA-ResNet ASPP -Unet. We choose benchmark datasets ORIGA for our experimental analysis. The crucial areas in clinical setup are examined and implemented successfully. The prediction and classification accuracy of proposed technique is achieved nearly 100%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    HEALTH INFORMATION SCIENCE, HIS 2021

  • ISBN

    978-3-030-90885-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    181-192

  • Název nakladatele

    SPRINGER-VERLAG BERLIN

  • Místo vydání

    Berlín

  • Místo konání akce

    Melbourne

  • Datum konání akce

    25. 10. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000758752400017