Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fast training and real-time classification algorithm based on Principal Component Analysis and F-transform

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA2001V0S" target="_blank" >RIV/61988987:17610/18:A2001V0S - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/SCIS-ISIS.2018.00056" target="_blank" >http://dx.doi.org/10.1109/SCIS-ISIS.2018.00056</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SCIS-ISIS.2018.00056" target="_blank" >10.1109/SCIS-ISIS.2018.00056</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fast training and real-time classification algorithm based on Principal Component Analysis and F-transform

  • Popis výsledku v původním jazyce

    While machine learning algorithms become more and more accurate in image processing tasks, their computation complexity becomes less important because they can be run on more and more powerful hardware. In this work, we are considering the computation complexity of a machine learning algorithm training/classification phase as the major criterion. The main aim is given to the Principal Component Analysis algorithm, which is examined, its drawbacks are point-out and suppressed by the proposed combination with the F-transform technique. We show that the training phase of such a combination is very fast, which is caused by the fact that both PCA and F-transform algorithms reduce dimensionality. In the designed benchmark, we show that the success rate of the fast hybrid algorithm is the same as the original PCA, due to F-transform ability to capture spatial information and reduction of noise/distortion in an image. Finally, we demonstrate that PCA+FT is faster and can achieve a higher success rate than a standard Convolution Neural Network and nevertheless, it is slightly less accurate as a Capsule Neural Network for the chosen dataset, its training phase is 100000x faster and classification time is faster 9x.

  • Název v anglickém jazyce

    Fast training and real-time classification algorithm based on Principal Component Analysis and F-transform

  • Popis výsledku anglicky

    While machine learning algorithms become more and more accurate in image processing tasks, their computation complexity becomes less important because they can be run on more and more powerful hardware. In this work, we are considering the computation complexity of a machine learning algorithm training/classification phase as the major criterion. The main aim is given to the Principal Component Analysis algorithm, which is examined, its drawbacks are point-out and suppressed by the proposed combination with the F-transform technique. We show that the training phase of such a combination is very fast, which is caused by the fact that both PCA and F-transform algorithms reduce dimensionality. In the designed benchmark, we show that the success rate of the fast hybrid algorithm is the same as the original PCA, due to F-transform ability to capture spatial information and reduction of noise/distortion in an image. Finally, we demonstrate that PCA+FT is faster and can achieve a higher success rate than a standard Convolution Neural Network and nevertheless, it is slightly less accurate as a Capsule Neural Network for the chosen dataset, its training phase is 100000x faster and classification time is faster 9x.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS)

  • ISBN

    978-1-5386-2633-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    275-280

  • Název nakladatele

    IEEE

  • Místo vydání

  • Místo konání akce

    Toyama

  • Datum konání akce

    5. 12. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000470750300045