Fast training and real-time classification algorithm based on Principal Component Analysis and F-transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA2001V0S" target="_blank" >RIV/61988987:17610/18:A2001V0S - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SCIS-ISIS.2018.00056" target="_blank" >http://dx.doi.org/10.1109/SCIS-ISIS.2018.00056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCIS-ISIS.2018.00056" target="_blank" >10.1109/SCIS-ISIS.2018.00056</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast training and real-time classification algorithm based on Principal Component Analysis and F-transform
Popis výsledku v původním jazyce
While machine learning algorithms become more and more accurate in image processing tasks, their computation complexity becomes less important because they can be run on more and more powerful hardware. In this work, we are considering the computation complexity of a machine learning algorithm training/classification phase as the major criterion. The main aim is given to the Principal Component Analysis algorithm, which is examined, its drawbacks are point-out and suppressed by the proposed combination with the F-transform technique. We show that the training phase of such a combination is very fast, which is caused by the fact that both PCA and F-transform algorithms reduce dimensionality. In the designed benchmark, we show that the success rate of the fast hybrid algorithm is the same as the original PCA, due to F-transform ability to capture spatial information and reduction of noise/distortion in an image. Finally, we demonstrate that PCA+FT is faster and can achieve a higher success rate than a standard Convolution Neural Network and nevertheless, it is slightly less accurate as a Capsule Neural Network for the chosen dataset, its training phase is 100000x faster and classification time is faster 9x.
Název v anglickém jazyce
Fast training and real-time classification algorithm based on Principal Component Analysis and F-transform
Popis výsledku anglicky
While machine learning algorithms become more and more accurate in image processing tasks, their computation complexity becomes less important because they can be run on more and more powerful hardware. In this work, we are considering the computation complexity of a machine learning algorithm training/classification phase as the major criterion. The main aim is given to the Principal Component Analysis algorithm, which is examined, its drawbacks are point-out and suppressed by the proposed combination with the F-transform technique. We show that the training phase of such a combination is very fast, which is caused by the fact that both PCA and F-transform algorithms reduce dimensionality. In the designed benchmark, we show that the success rate of the fast hybrid algorithm is the same as the original PCA, due to F-transform ability to capture spatial information and reduction of noise/distortion in an image. Finally, we demonstrate that PCA+FT is faster and can achieve a higher success rate than a standard Convolution Neural Network and nevertheless, it is slightly less accurate as a Capsule Neural Network for the chosen dataset, its training phase is 100000x faster and classification time is faster 9x.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS)
ISBN
978-1-5386-2633-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
275-280
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Toyama
Datum konání akce
5. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000470750300045