Novel dimensionality reduction approach for unsupervised learning on small datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101WLX" target="_blank" >RIV/61988987:17610/20:A2101WLX - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0031320320300959" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0031320320300959</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2020.107291" target="_blank" >10.1016/j.patcog.2020.107291</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel dimensionality reduction approach for unsupervised learning on small datasets
Popis výsledku v původním jazyce
We focus on an image classification task in which only several unlabeled images per class are available for learning and low computational complexity is required. We recall the state-of-the-art methods that are used to solve the task: autoencoder-based approaches and manifold-decomposition-based approaches. Next, we introduce our proposed method, which is based on a combination of the F-transform and (kernel) principal component analysis. F-transform significantly reduces the computation time of PCA and increases the robustness of PCA to translation, while PCA proposes more descriptive features. This combination performs 3D reduction: the F-transform reduces dimensionality over a single 2D image, while PCA reduces dimensionality through the whole set of processed images. Based on the benchmark results, our method may outperform deep-learning-based methods in limited settings. For completeness, we also address other image resampling algorithms that can be used instead of the F-transform, and we find that the F-transform is the most suitable.
Název v anglickém jazyce
Novel dimensionality reduction approach for unsupervised learning on small datasets
Popis výsledku anglicky
We focus on an image classification task in which only several unlabeled images per class are available for learning and low computational complexity is required. We recall the state-of-the-art methods that are used to solve the task: autoencoder-based approaches and manifold-decomposition-based approaches. Next, we introduce our proposed method, which is based on a combination of the F-transform and (kernel) principal component analysis. F-transform significantly reduces the computation time of PCA and increases the robustness of PCA to translation, while PCA proposes more descriptive features. This combination performs 3D reduction: the F-transform reduces dimensionality over a single 2D image, while PCA reduces dimensionality through the whole set of processed images. Based on the benchmark results, our method may outperform deep-learning-based methods in limited settings. For completeness, we also address other image resampling algorithms that can be used instead of the F-transform, and we find that the F-transform is the most suitable.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PATTERN RECOGN
ISSN
0031-3203
e-ISSN
—
Svazek periodika
103
Číslo periodika v rámci svazku
červenec
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
107291
Kód UT WoS článku
000530845000026
EID výsledku v databázi Scopus
2-s2.0-85080061950