Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The F-transform Plus PCA Dimensionality Reduction with Application to Pattern Recognition in Large Databases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901X6O" target="_blank" >RIV/61988987:17610/18:A1901X6O - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The F-transform Plus PCA Dimensionality Reduction with Application to Pattern Recognition in Large Databases

  • Popis výsledku v původním jazyce

    Two distinguished properties of the F-transform:the best approximation in a local sense and the reductionin dimension imply the fact that the F-transform has manysuccessful applications. In the first part, we propose another wayof computing the F-transform components of a functional data.This way is based on the particular dimensionality reductionalgorithm named Laplacian eigenmaps. In the second part,we strengthen the effect of F-transform-based dimensionalityreduction by applying the PCA reduction method over theF0- or F1- transform results. We demonstrate the efficiency ofthe proposed combinations F0zT+PCA and F1zT+PCA on theproblem of patter recognition in a large database. We compareboth combinations with other relevant techniques (besides other,LENET-like CNN) and show that they outperform them fromthe computation time and success rate points of view.

  • Název v anglickém jazyce

    The F-transform Plus PCA Dimensionality Reduction with Application to Pattern Recognition in Large Databases

  • Popis výsledku anglicky

    Two distinguished properties of the F-transform:the best approximation in a local sense and the reductionin dimension imply the fact that the F-transform has manysuccessful applications. In the first part, we propose another wayof computing the F-transform components of a functional data.This way is based on the particular dimensionality reductionalgorithm named Laplacian eigenmaps. In the second part,we strengthen the effect of F-transform-based dimensionalityreduction by applying the PCA reduction method over theF0- or F1- transform results. We demonstrate the efficiency ofthe proposed combinations F0zT+PCA and F1zT+PCA on theproblem of patter recognition in a large database. We compareboth combinations with other relevant techniques (besides other,LENET-like CNN) and show that they outperform them fromthe computation time and success rate points of view.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018)

  • ISBN

    978-1-5386-9275-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    1020-1026

  • Název nakladatele

    IEEE publishing services

  • Místo vydání

    Bengaluru

  • Místo konání akce

    Bengaluru

  • Datum konání akce

    18. 11. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000459238800138