The Use of Artificial Neural Networks to Estimate Thermal Resistance of Knitted Fabrics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F15%3A00003200" target="_blank" >RIV/46747885:24410/15:00003200 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Use of Artificial Neural Networks to Estimate Thermal Resistance of Knitted Fabrics
Popis výsledku v původním jazyce
This study aims to develop a model for the prediction of thermal resistance of fleece fabric by using regression analysis and artificial neural network technique. Primarily fleece fabrics protect human body from heat loss during cold weather. Its secondpurpose is to absorb sweat from human skin. Fleece fabric is commonly used to make sweatshirts, trousers, and jackets for cold weather. Higher thermal resistance of fleece is one of the main demands of users. Many factors can influence the thermal resistance efficiency of fleece. We have used porosity, thickness of fabric, thermal conductivity of fabric, overall moisture management capacity, thermal absorptivity, percentage of cotton, and polyester and planner weight as independent variables for the prediction of thermal resistance of fleece fabric. We have found that there was a significant difference between regression and artificial neural network analysis in the selection of most significant factor. Nevertheless, both models are sig
Název v anglickém jazyce
The Use of Artificial Neural Networks to Estimate Thermal Resistance of Knitted Fabrics
Popis výsledku anglicky
This study aims to develop a model for the prediction of thermal resistance of fleece fabric by using regression analysis and artificial neural network technique. Primarily fleece fabrics protect human body from heat loss during cold weather. Its secondpurpose is to absorb sweat from human skin. Fleece fabric is commonly used to make sweatshirts, trousers, and jackets for cold weather. Higher thermal resistance of fleece is one of the main demands of users. Many factors can influence the thermal resistance efficiency of fleece. We have used porosity, thickness of fabric, thermal conductivity of fabric, overall moisture management capacity, thermal absorptivity, percentage of cotton, and polyester and planner weight as independent variables for the prediction of thermal resistance of fleece fabric. We have found that there was a significant difference between regression and artificial neural network analysis in the selection of most significant factor. Nevertheless, both models are sig
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JJ - Ostatní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
TEKSTIL VE KONFEKSIYON
ISSN
1300-3356
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
TR - Turecká republika
Počet stran výsledku
9
Strana od-do
304-312
Kód UT WoS článku
000369622000004
EID výsledku v databázi Scopus
2-s2.0-84958699214