On the order of autoregressive model in temperature series.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F00%3A00000024" target="_blank" >RIV/46747885:24510/00:00000024 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the order of autoregressive model in temperature series.
Popis výsledku v původním jazyce
Knowledge of the time series structure is essential for generating synthetic daily series of meteorological data in creating climate change scenarios. Weather generators, which contain parameters describing the series structure, have commonly been used in order to meet demands for temporal resolution of one day in the series. In climate change assessments, namely in agriculture and hydrology sectors, daily variables are necessary inputs to impact models. This paper attempts to identify the AR order in daily maximum temperature series by using a new nonparametric method. The method is applied to both measured and simulated temperature series. The simulated series are produced by a general circulation model (GCM) developed in Germany (ECHAM3/T42 - DKRZ1993). The ECHAM output used here consists of daily maximum temperatures simulated by the control and perturbed runs in a gridpoint located in the Czech Republic (south Moravia). Daily series measured in Moravia serve as the observation cou
Název v anglickém jazyce
On the order of autoregressive model in temperature series.
Popis výsledku anglicky
Knowledge of the time series structure is essential for generating synthetic daily series of meteorological data in creating climate change scenarios. Weather generators, which contain parameters describing the series structure, have commonly been used in order to meet demands for temporal resolution of one day in the series. In climate change assessments, namely in agriculture and hydrology sectors, daily variables are necessary inputs to impact models. This paper attempts to identify the AR order in daily maximum temperature series by using a new nonparametric method. The method is applied to both measured and simulated temperature series. The simulated series are produced by a general circulation model (GCM) developed in Germany (ECHAM3/T42 - DKRZ1993). The ECHAM output used here consists of daily maximum temperatures simulated by the control and perturbed runs in a gridpoint located in the Czech Republic (south Moravia). Daily series measured in Moravia serve as the observation cou
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2000
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Meteorological journal
ISSN
1335-339 X
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—