Using Parameterization of Surface Areas for Volumes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F11%3A%230000795" target="_blank" >RIV/46747885:24510/11:#0000795 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aplimat.com/volume_4_2011/General_Information/number_2.html" target="_blank" >http://www.aplimat.com/volume_4_2011/General_Information/number_2.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Parameterization of Surface Areas for Volumes
Popis výsledku v původním jazyce
The paper follows up with the paper published in the proceedings of the Slovak-Czech-Polish Mathematical School (Ružomberok 2004) and The International Colloquium on Acquisition Process Management, Brno 2006,where volumes of solids were discussed as topological problems. The new relation for calculation of volumes of solids in En was presenred there. That relation asks a parametric description of a surface area of a given solid and then we are able to solve the problem by using basic topological properties. The surface areas of these volumes must be smooth or piecewise smooth areas in Euclidean space of the corresponding dimension. The calculations of areas and volumes could be easier in some cases, because we calculate with integrals of fewer dimension. That paper shortly repeats all needed assumptions and also results, and presents some applications on two examples.
Název v anglickém jazyce
Using Parameterization of Surface Areas for Volumes
Popis výsledku anglicky
The paper follows up with the paper published in the proceedings of the Slovak-Czech-Polish Mathematical School (Ružomberok 2004) and The International Colloquium on Acquisition Process Management, Brno 2006,where volumes of solids were discussed as topological problems. The new relation for calculation of volumes of solids in En was presenred there. That relation asks a parametric description of a surface area of a given solid and then we are able to solve the problem by using basic topological properties. The surface areas of these volumes must be smooth or piecewise smooth areas in Euclidean space of the corresponding dimension. The calculations of areas and volumes could be easier in some cases, because we calculate with integrals of fewer dimension. That paper shortly repeats all needed assumptions and also results, and presents some applications on two examples.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aplimat-Journal of Applied Mathematics
ISSN
1337-6365
e-ISSN
—
Svazek periodika
4 (2011)
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
341-346
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—