Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimization of Industrial Robot Trajectory in Composite Production

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F19%3A00005983" target="_blank" >RIV/46747885:24510/19:00005983 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24620/19:00005983

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimization of Industrial Robot Trajectory in Composite Production

  • Popis výsledku v původním jazyce

    Currently, traditional materials (e.g. iron, steel,aluminium alloy, wood) are increasingly being replaced by composites in many industrial areas. The main advantages of these new materials are their light weight, high strength and flexibility, corrosion resistance, long lifespan and the reduced price of the produced components. This article discusses the quality of the manufacturing process technology of a shaped composite in 3D space. The technology used is based on a winding of carbon filaments on a polyurethane frame with a circular cross-section (this type of composites is used, for example, in automotive chassis). One important factor in composite frame quality is making the correct winding angles of fibres on the frame and the homogeneity of the individual winding layers. The composite frame is attached to the endeffector of the robot and successively passes through the fibreprocessing head during the winding process with three layers. Each layer of fibres is wound at a different angle (usually at π/4, 0 and - π/4). The mathematical model of the winding proces and the matrix calculus (especially matrices of rotations, translates and calculations of Euler angles) are used to determine the optimized 3D trajectory of end-effector in this paper. The differential evolution algorithm is applied to finding the optimized 3D trajectory of the end-effector. In this way the winding angles and homogeneity of winding layers are maintained during production of the frame composite. The optimized end-effector trajectory is defined by calculated sequence of tool-centre-point values. The calculation of optimized trajectory is programmed and tested in the Delphi development environment. This approach to determining the optimized trajectory of the robot is substantially more effective than the repeated search of a suitable trajectory using the control panel (teach pendant) of the robot.

  • Název v anglickém jazyce

    Optimization of Industrial Robot Trajectory in Composite Production

  • Popis výsledku anglicky

    Currently, traditional materials (e.g. iron, steel,aluminium alloy, wood) are increasingly being replaced by composites in many industrial areas. The main advantages of these new materials are their light weight, high strength and flexibility, corrosion resistance, long lifespan and the reduced price of the produced components. This article discusses the quality of the manufacturing process technology of a shaped composite in 3D space. The technology used is based on a winding of carbon filaments on a polyurethane frame with a circular cross-section (this type of composites is used, for example, in automotive chassis). One important factor in composite frame quality is making the correct winding angles of fibres on the frame and the homogeneity of the individual winding layers. The composite frame is attached to the endeffector of the robot and successively passes through the fibreprocessing head during the winding process with three layers. Each layer of fibres is wound at a different angle (usually at π/4, 0 and - π/4). The mathematical model of the winding proces and the matrix calculus (especially matrices of rotations, translates and calculations of Euler angles) are used to determine the optimized 3D trajectory of end-effector in this paper. The differential evolution algorithm is applied to finding the optimized 3D trajectory of the end-effector. In this way the winding angles and homogeneity of winding layers are maintained during production of the frame composite. The optimized end-effector trajectory is defined by calculated sequence of tool-centre-point values. The calculation of optimized trajectory is programmed and tested in the Delphi development environment. This approach to determining the optimized trajectory of the robot is substantially more effective than the repeated search of a suitable trajectory using the control panel (teach pendant) of the robot.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2018 18th International Conference on Mechatronics - Mechatronika, ME 2018

  • ISBN

    9788021455443

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    270-275

  • Název nakladatele

    Brno University of Technology

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    1. 1. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku