Option Pricing under the Kou Jump-Diffusion Model: a DG Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F19%3A00008639" target="_blank" >RIV/46747885:24510/19:00008639 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/19:10243826
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/1.5133547" target="_blank" >https://aip.scitation.org/doi/10.1063/1.5133547</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5133547" target="_blank" >10.1063/1.5133547</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Option Pricing under the Kou Jump-Diffusion Model: a DG Approach
Popis výsledku v původním jazyce
More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.
Název v anglickém jazyce
Option Pricing under the Kou Jump-Diffusion Model: a DG Approach
Popis výsledku anglicky
More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-0-7354-1919-3
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
American Institute of Physics
Místo vydání
Melville
Místo konání akce
Sozopol
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000521744400065