Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00011945" target="_blank" >RIV/46747885:24510/23:00011945 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/acp/article-abstract/2849/1/090001/2909004/Numerical-pricing-of-European-options-under-the" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/2849/1/090001/2909004/Numerical-pricing-of-European-options-under-the</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0163421" target="_blank" >10.1063/5.0163421</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility
Popis výsledku v původním jazyce
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the model that combines the Heston stochastic volatility model with the Kou-type double exponential jumps in the underlying prices. As a result, the pricing function is governed by a partial-integro differential equation having the price of the underlying asset and its variance as spatial variables. Moreover, a presence of the non-local operator arising from jumps increases the complexity of the problem. Therefore, to improve the numerical pricing process we solve the relevant pricing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential operator is treated implicitly while the integral one explicitly by a composite trapezoidal rule. Finally, the numerical results demonstrate the capability of the numerical approach presented within the simple experiments.
Název v anglickém jazyce
Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility
Popis výsledku anglicky
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the model that combines the Heston stochastic volatility model with the Kou-type double exponential jumps in the underlying prices. As a result, the pricing function is governed by a partial-integro differential equation having the price of the underlying asset and its variance as spatial variables. Moreover, a presence of the non-local operator arising from jumps increases the complexity of the problem. Therefore, to improve the numerical pricing process we solve the relevant pricing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential operator is treated implicitly while the integral one explicitly by a composite trapezoidal rule. Finally, the numerical results demonstrate the capability of the numerical approach presented within the simple experiments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
—
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
American Institute of Physics Inc.
Místo vydání
Melville, NY
Místo konání akce
Rhodes
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—