Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10250544" target="_blank" >RIV/61989100:27510/22:10250544 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/22:00011947
Výsledek na webu
<a href="https://aip.scitation.org/toc/apc/2505/1?windowStart=50&size=50" target="_blank" >https://aip.scitation.org/toc/apc/2505/1?windowStart=50&size=50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0100665" target="_blank" >10.1063/5.0100665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Popis výsledku v původním jazyce
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the Bates model that combines the Merton jump-diffusion model with a stochastic volatility proposed by Heston. As a result, the pricing function is governed by a partial-integro differential equation with two spatial variables, specifically, the price of the underlying asset and its variance. Moreover, the simultaneous presence of the non-local integral term arising from jumps increases the complexity of the problem. Therefore, to improve the numerical valuation we solve the corresponding governing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. Finally, the numerical results obtained are compared within the reference benchmark. (C) 2022 American Institute of Physics Inc.. All rights reserved.
Název v anglickém jazyce
Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Popis výsledku anglicky
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the Bates model that combines the Merton jump-diffusion model with a stochastic volatility proposed by Heston. As a result, the pricing function is governed by a partial-integro differential equation with two spatial variables, specifically, the price of the underlying asset and its variance. Moreover, the simultaneous presence of the non-local integral term arising from jumps increases the complexity of the problem. Therefore, to improve the numerical valuation we solve the corresponding governing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. Finally, the numerical results obtained are compared within the reference benchmark. (C) 2022 American Institute of Physics Inc.. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings. Volume 2505
ISBN
978-0-7354-4396-9
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
AIP Publishing
Místo vydání
Melville
Místo konání akce
Sofie
Datum konání akce
7. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—