Differential EvolutionAlgorithm in Models of Technical Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F21%3A00009457" target="_blank" >RIV/46747885:24510/21:00009457 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.7148/2021-0179" target="_blank" >https://doi.org/10.7148/2021-0179</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7148/2021" target="_blank" >10.7148/2021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential EvolutionAlgorithm in Models of Technical Optimization
Popis výsledku v původním jazyce
At present, evolutionary optimization algorithms are increasingly used in the development of new technological processes. Evolutionary algorithms often allow the optimization procedure to be performed even in cases where classical optimization algorithms fail (e.g. gradient methods) and where an acceptable solution is sufficient to solve the optimization task. The article focuses on possibilities of using a differential evolution algorithm in the optimization process. This algorithm is often referred to in the literature as a global optimization procedure. However, we show by means of a practical example that the convergence of the classic differential algorithm to the global extreme is not generally assured and is largely dependent on the specific cost function. To remove this weakness, we designed a modified version of the differential evolution algorithm. The improved version, named the modified differential evolution algorithm, is described in the article. It is possible to prove asymptotic convergence to the global minimum of the cost function for the modified version of the algorithm.
Název v anglickém jazyce
Differential EvolutionAlgorithm in Models of Technical Optimization
Popis výsledku anglicky
At present, evolutionary optimization algorithms are increasingly used in the development of new technological processes. Evolutionary algorithms often allow the optimization procedure to be performed even in cases where classical optimization algorithms fail (e.g. gradient methods) and where an acceptable solution is sufficient to solve the optimization task. The article focuses on possibilities of using a differential evolution algorithm in the optimization process. This algorithm is often referred to in the literature as a global optimization procedure. However, we show by means of a practical example that the convergence of the classic differential algorithm to the global extreme is not generally assured and is largely dependent on the specific cost function. To remove this weakness, we designed a modified version of the differential evolution algorithm. The improved version, named the modified differential evolution algorithm, is described in the article. It is possible to prove asymptotic convergence to the global minimum of the cost function for the modified version of the algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Communications of the ECMS , Volume 35, Issue 1, June 2021
ISBN
978-3-937436-72-2
ISSN
2522-2422
e-ISSN
—
Počet stran výsledku
6
Strana od-do
179-184
Název nakladatele
Communications of the ECMS , Volume 35, Issue 1, June 2021
Místo vydání
United Kingdom
Místo konání akce
on-line
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—