Prediction of methylene blue removal by nano TiO2 using deep neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F21%3A00008951" target="_blank" >RIV/46747885:24620/21:00008951 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4360/13/18/3104" target="_blank" >https://www.mdpi.com/2073-4360/13/18/3104</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym13183104" target="_blank" >10.3390/polym13183104</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of methylene blue removal by nano TiO2 using deep neural network
Popis výsledku v původním jazyce
This paper deals with the prediction of methylene blue (MB) dye removal under the influence of titanium dioxide nanoparticles (TiO2 NPs) through deep neural network (DNN). In the first step, TiO2 NPs were prepared and their morphological properties were analysed by scanning electron microscopy. Later, the influence of as synthesized TiO2 NPs was tested against MB dye removal and in the final step, DNN was used for the prediction. DNN is an efficient machine learning tools and widely used model for the prediction of highly complex problems. However, it has never been used for the prediction of MB dye removal. Therefore, this paper investigates the prediction accuracy of MB dye removal under the influence of TiO2 NPs using DNN. Furthermore, the proposed DNN model was used to map out the complex input-output conditions for the prediction of optimal results. The amount of chemicals, i.e., amount of TiO2 NPs, amount of ehylene glycol and reaction time were chosen as input variables and MB dye removal percentage was evaluated as a response. DNN model provides significantly high performance accuracy for the prediction of MB dye removal and can be used as a powerful tool for the prediction of other functional properties of nanocomposites.
Název v anglickém jazyce
Prediction of methylene blue removal by nano TiO2 using deep neural network
Popis výsledku anglicky
This paper deals with the prediction of methylene blue (MB) dye removal under the influence of titanium dioxide nanoparticles (TiO2 NPs) through deep neural network (DNN). In the first step, TiO2 NPs were prepared and their morphological properties were analysed by scanning electron microscopy. Later, the influence of as synthesized TiO2 NPs was tested against MB dye removal and in the final step, DNN was used for the prediction. DNN is an efficient machine learning tools and widely used model for the prediction of highly complex problems. However, it has never been used for the prediction of MB dye removal. Therefore, this paper investigates the prediction accuracy of MB dye removal under the influence of TiO2 NPs using DNN. Furthermore, the proposed DNN model was used to map out the complex input-output conditions for the prediction of optimal results. The amount of chemicals, i.e., amount of TiO2 NPs, amount of ehylene glycol and reaction time were chosen as input variables and MB dye removal percentage was evaluated as a response. DNN model provides significantly high performance accuracy for the prediction of MB dye removal and can be used as a powerful tool for the prediction of other functional properties of nanocomposites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000701562800001
EID výsledku v databázi Scopus
2-s2.0-85115163834