A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00011195" target="_blank" >RIV/46747885:24620/23:00011195 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0378778823003419" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378778823003419</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enbuild.2023.113111" target="_blank" >10.1016/j.enbuild.2023.113111</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort
Popis výsledku v původním jazyce
The rise in greenhouse gas emissions in cities and the excessive consumption of fossil energy resources has made the development of green spaces, such as green roofs, an increasingly important focus in urban areas. This study proposes a novel smart energy-comfort system for green roofs in housing estates that utilises integrated machine learning (ML), DesignBuilder (DB) software and Taguchi design computations for optimising green roof design and operation in buildings. The optimisation process maximises energy conservation and thermal comfort of the green roof buildings for effective parameters of green roofs including Leaf Area Index (P1), leaf reflectivity (P2), leaf emissivity (P3), and stomatal resistance (P4). The optimal solutions can result in a 12.8% increase in comfort hours and a 14% reduction in energy consumption compared to the base case. The ML analysis revealed that the adaptive network-based fuzzy inference system is the most appropriate method for predicting Energy-Comfort functions based on effective parameters, with a correlation coefficient greater than 97%. This novel smart framework for the optimal design of green roofs in buildings offers an innovative approach to achieving energy conservation and thermal comfort in urban areas.
Název v anglickém jazyce
A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort
Popis výsledku anglicky
The rise in greenhouse gas emissions in cities and the excessive consumption of fossil energy resources has made the development of green spaces, such as green roofs, an increasingly important focus in urban areas. This study proposes a novel smart energy-comfort system for green roofs in housing estates that utilises integrated machine learning (ML), DesignBuilder (DB) software and Taguchi design computations for optimising green roof design and operation in buildings. The optimisation process maximises energy conservation and thermal comfort of the green roof buildings for effective parameters of green roofs including Leaf Area Index (P1), leaf reflectivity (P2), leaf emissivity (P3), and stomatal resistance (P4). The optimal solutions can result in a 12.8% increase in comfort hours and a 14% reduction in energy consumption compared to the base case. The ML analysis revealed that the adaptive network-based fuzzy inference system is the most appropriate method for predicting Energy-Comfort functions based on effective parameters, with a correlation coefficient greater than 97%. This novel smart framework for the optimal design of green roofs in buildings offers an innovative approach to achieving energy conservation and thermal comfort in urban areas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy and Buildings
ISSN
0378-7788
e-ISSN
—
Svazek periodika
291
Číslo periodika v rámci svazku
JUL 15
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000989147300001
EID výsledku v databázi Scopus
2-s2.0-85154058321