Low-energy residential building optimisation for energy and comfort enhancement in semi-arid climate conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00011198" target="_blank" >RIV/46747885:24620/23:00011198 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0196890423006106" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0196890423006106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enconman.2023.117264" target="_blank" >10.1016/j.enconman.2023.117264</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low-energy residential building optimisation for energy and comfort enhancement in semi-arid climate conditions
Popis výsledku v původním jazyce
The application of energy-efficient strategies in buildings, such as the Green Building Concept, can significantly impact human comfort and resource consumption. However, due to the complexity of decision-making factors and the variety of available materials, computational models are necessary to identify the most effective solutions and optimise building energy performance. This study presents an integrated framework that uses machine learning algorithms and a Petri Net control system to optimise the thermal, comfort, and energy efficiency of both vertical and horizontal building envelopes in semi-arid climate zones. The framework incorporates several passive techniques for building energy parameters, including material thickness and melting point, window types, wall insulation thickness and thermal emissivity, wall solar absorbance, window wall ratio, fenestration position, air tightness, roof solar reflectance, roof insulation thickness and conductivity (W/(m·°C)), and floor insulation thickness. An experiment design was developed using Box-Behnken Design-Response Surface Methodology (BBD-RSM) for statistical optimisation, which was coupled with Design Builder simulation model. The methodology was demonstrated by applying it to a residential building in Mexico. Meta Additive Regression was used to analyse the output factors, which showed higher confidence compared to REP Tree and M5P Tree algorithms in green buildings. The results demonstrate that an annual energy reduction of 50 kW/m2 per household can be achieved by using an optimised building envelope.
Název v anglickém jazyce
Low-energy residential building optimisation for energy and comfort enhancement in semi-arid climate conditions
Popis výsledku anglicky
The application of energy-efficient strategies in buildings, such as the Green Building Concept, can significantly impact human comfort and resource consumption. However, due to the complexity of decision-making factors and the variety of available materials, computational models are necessary to identify the most effective solutions and optimise building energy performance. This study presents an integrated framework that uses machine learning algorithms and a Petri Net control system to optimise the thermal, comfort, and energy efficiency of both vertical and horizontal building envelopes in semi-arid climate zones. The framework incorporates several passive techniques for building energy parameters, including material thickness and melting point, window types, wall insulation thickness and thermal emissivity, wall solar absorbance, window wall ratio, fenestration position, air tightness, roof solar reflectance, roof insulation thickness and conductivity (W/(m·°C)), and floor insulation thickness. An experiment design was developed using Box-Behnken Design-Response Surface Methodology (BBD-RSM) for statistical optimisation, which was coupled with Design Builder simulation model. The methodology was demonstrated by applying it to a residential building in Mexico. Meta Additive Regression was used to analyse the output factors, which showed higher confidence compared to REP Tree and M5P Tree algorithms in green buildings. The results demonstrate that an annual energy reduction of 50 kW/m2 per household can be achieved by using an optimised building envelope.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023066" target="_blank" >LM2023066: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy Conversion and Management
ISSN
0196-8904
e-ISSN
—
Svazek periodika
291
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001029015700001
EID výsledku v databázi Scopus
2-s2.0-85162150229