Advanced Nanosystems for Cancer Therapeutics: A Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00012271" target="_blank" >RIV/46747885:24620/23:00012271 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsanm.3c00859" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.3c00859</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.3c00859" target="_blank" >10.1021/acsanm.3c00859</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Nanosystems for Cancer Therapeutics: A Review
Popis výsledku v původním jazyce
Since cancer has a very complex pathophysiology, existing cancer treatment strategies encounter several challenges such as the lack of specificity/selectivity, induction of multidrug resistance, and possible side effects/toxicity. A wide variety of organic, inorganic, and hybrid nanosystems have been designed with unique magnetic, thermal, mechanical, electrical, and optical properties for targeted cancer therapy. These advanced nanosystems with enhanced bioavailability, biocompatibility, and drug loading capacity have been developed for targeted cancer therapy to reduce toxicity and improve the targeting properties. In this context, challenges persist for their clinical translational studies and enhancement of their therapeutic efficiency as well as the optimization of synthesis conditions and large-scale production. In addition, despite promising preclinical results, the number of nanosystems available to patients is still very low, partly due to a lack of understanding of the differences among animal model species and humans that influence the behavior and functionality of these nanosystems. Regarding this, organ-on-a-chip platforms can significantly help in drug screening and delivery aspects in cancer/tumor cells as well as cancer modeling research; the organs-on-chip approach can also be helpful to analyze the cancer-immune cells interactions. Future studies should focus on the exploration of multifunctional nanosystems with synergistic chemo-photothermal, photothermal/photodynamic, and cancer immunotherapeutic potentials as well as smart nanosystems with theranostic capabilities. Herein, recent advancements pertaining to the applications of advanced nanosystems for cancer therapeutics are deliberated. Current obstacles and limitations hindering the application from research to clinical uses are also discussed while providing recommendations for a more efficient adoption of nanomaterials in the treatment of cancers.
Název v anglickém jazyce
Advanced Nanosystems for Cancer Therapeutics: A Review
Popis výsledku anglicky
Since cancer has a very complex pathophysiology, existing cancer treatment strategies encounter several challenges such as the lack of specificity/selectivity, induction of multidrug resistance, and possible side effects/toxicity. A wide variety of organic, inorganic, and hybrid nanosystems have been designed with unique magnetic, thermal, mechanical, electrical, and optical properties for targeted cancer therapy. These advanced nanosystems with enhanced bioavailability, biocompatibility, and drug loading capacity have been developed for targeted cancer therapy to reduce toxicity and improve the targeting properties. In this context, challenges persist for their clinical translational studies and enhancement of their therapeutic efficiency as well as the optimization of synthesis conditions and large-scale production. In addition, despite promising preclinical results, the number of nanosystems available to patients is still very low, partly due to a lack of understanding of the differences among animal model species and humans that influence the behavior and functionality of these nanosystems. Regarding this, organ-on-a-chip platforms can significantly help in drug screening and delivery aspects in cancer/tumor cells as well as cancer modeling research; the organs-on-chip approach can also be helpful to analyze the cancer-immune cells interactions. Future studies should focus on the exploration of multifunctional nanosystems with synergistic chemo-photothermal, photothermal/photodynamic, and cancer immunotherapeutic potentials as well as smart nanosystems with theranostic capabilities. Herein, recent advancements pertaining to the applications of advanced nanosystems for cancer therapeutics are deliberated. Current obstacles and limitations hindering the application from research to clinical uses are also discussed while providing recommendations for a more efficient adoption of nanomaterials in the treatment of cancers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
7123 - 7149
Kód UT WoS článku
000980945800001
EID výsledku v databázi Scopus
2-s2.0-85156232965