Electron transfer-mediated enhancement of superoxide radical generation in fenton-like process: Key role of oxygen vacancy-regulated local electron density of cobalt sites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F24%3A00011526" target="_blank" >RIV/46747885:24620/24:00011526 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0926337323011335" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926337323011335</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apcatb.2023.123490" target="_blank" >10.1016/j.apcatb.2023.123490</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electron transfer-mediated enhancement of superoxide radical generation in fenton-like process: Key role of oxygen vacancy-regulated local electron density of cobalt sites
Popis výsledku v původním jazyce
Designing metal oxides with oxygen vacancy (OV) is a prospective strategy for boosted Fenton-like process. However, what OV is, whether OV enhancement increases the catalytic performance, OV-related H2O2 activation, and relationship between OV and ROS or non-radical pathways have not been fully understood. Herein, yolk-shell Co3O4 nanospheres with various OV were fabricated to overcome the above contentious problems and establish a relationship between OV, ROS, and electron transfer in sulfadiazine (SDZ) degradation via H2O2 activation. The results showed that the delocalized electron-rich Co sites around OV with increasing OV allowed the improved conductivity, thereby leading to stronger adsorption and activation of H2O2 to generate more •OH as evidenced by the attenuated adsorption energy and prolonged O-O bond. The subsequent rapid depletion of •OH coupled with the increase in O2•− over time and the emergence of electron transfer from SDZ explored a pathway enhancing O2•− generation for SDZ degradation.
Název v anglickém jazyce
Electron transfer-mediated enhancement of superoxide radical generation in fenton-like process: Key role of oxygen vacancy-regulated local electron density of cobalt sites
Popis výsledku anglicky
Designing metal oxides with oxygen vacancy (OV) is a prospective strategy for boosted Fenton-like process. However, what OV is, whether OV enhancement increases the catalytic performance, OV-related H2O2 activation, and relationship between OV and ROS or non-radical pathways have not been fully understood. Herein, yolk-shell Co3O4 nanospheres with various OV were fabricated to overcome the above contentious problems and establish a relationship between OV, ROS, and electron transfer in sulfadiazine (SDZ) degradation via H2O2 activation. The results showed that the delocalized electron-rich Co sites around OV with increasing OV allowed the improved conductivity, thereby leading to stronger adsorption and activation of H2O2 to generate more •OH as evidenced by the attenuated adsorption energy and prolonged O-O bond. The subsequent rapid depletion of •OH coupled with the increase in O2•− over time and the emergence of electron transfer from SDZ explored a pathway enhancing O2•− generation for SDZ degradation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Catalysis B: Environmental
ISSN
0926-3373
e-ISSN
—
Svazek periodika
343
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
001115615100001
EID výsledku v databázi Scopus
2-s2.0-85177785697