Employing nonlinear transformation of datasets to train neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47718684%3A_____%2F24%3A10002350" target="_blank" >RIV/47718684:_____/24:10002350 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Employing nonlinear transformation of datasets to train neural networks
Popis výsledku v původním jazyce
Invited lecture at the Technical Computing Prague 2024. It is often a good idea to linearly transform each input and output signal to have a mean of zero and a standard deviation of one. This technique, called standardisation or z-scoring, is particularly useful for training statistical classifiers and recurrent neural networks because it helps with the conditionality and numerical stability of the training process. However, some problems require the neural network to predict outputs with the same relative error over different orders of magnitude. A typical class of such problems is modelling flow, vibration and other dynamic processes. This presentation shows how the training data can be nonlinearly transformed, how the transformation affects the network performance, and the drawbacks of this method. The application of nonlinear transformation of training data is also demonstrated by modelling hydrodynamic lubrication in a journal bearing using feedforward neural networks
Název v anglickém jazyce
Employing nonlinear transformation of datasets to train neural networks
Popis výsledku anglicky
Invited lecture at the Technical Computing Prague 2024. It is often a good idea to linearly transform each input and output signal to have a mean of zero and a standard deviation of one. This technique, called standardisation or z-scoring, is particularly useful for training statistical classifiers and recurrent neural networks because it helps with the conditionality and numerical stability of the training process. However, some problems require the neural network to predict outputs with the same relative error over different orders of magnitude. A typical class of such problems is modelling flow, vibration and other dynamic processes. This presentation shows how the training data can be nonlinearly transformed, how the transformation affects the network performance, and the drawbacks of this method. The application of nonlinear transformation of training data is also demonstrated by modelling hydrodynamic lubrication in a journal bearing using feedforward neural networks
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů