Accuracy of the Inverse Kinematics of a Planar Redundant Manipulator Solved by an MLP Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00377356" target="_blank" >RIV/68407700:21220/24:00377356 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-70251-8_22" target="_blank" >https://doi.org/10.1007/978-3-031-70251-8_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70251-8_22" target="_blank" >10.1007/978-3-031-70251-8_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accuracy of the Inverse Kinematics of a Planar Redundant Manipulator Solved by an MLP Neural Network
Popis výsledku v původním jazyce
The inverse kinematics of manipulators can be solved by approximating the data obtained using forward kinematics through the use of a multi-layer perceptron neural network, provided the input and output data are swapped before training. However, with redundant manipulators, reaching the same point is possible with an infinite number of joint angle settings, rendering the existence of an inverse function impossible. Data for training the neural network must be prepared so that only one combination of angles is used for each point reached. Achieving this may involve supplementing the obstacle avoidance function, even though the forward kinematics of the manipulator lacks a clear, analytically accessible solution. The paper addresses how to find a solution to forward kinematics that optimally fulfills the function describing the obstacle avoidance problem, ensuring uniqueness and continuity for use in neural network training. The acquired data were used to train a neural network with one hidden layer, and the accuracy of the resulting network was verified on a simple trajectory.
Název v anglickém jazyce
Accuracy of the Inverse Kinematics of a Planar Redundant Manipulator Solved by an MLP Neural Network
Popis výsledku anglicky
The inverse kinematics of manipulators can be solved by approximating the data obtained using forward kinematics through the use of a multi-layer perceptron neural network, provided the input and output data are swapped before training. However, with redundant manipulators, reaching the same point is possible with an infinite number of joint angle settings, rendering the existence of an inverse function impossible. Data for training the neural network must be prepared so that only one combination of angles is used for each point reached. Achieving this may involve supplementing the obstacle avoidance function, even though the forward kinematics of the manipulator lacks a clear, analytically accessible solution. The paper addresses how to find a solution to forward kinematics that optimally fulfills the function describing the obstacle avoidance problem, ensuring uniqueness and continuity for use in neural network training. The acquired data were used to train a neural network with one hidden layer, and the accuracy of the resulting network was verified on a simple trajectory.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Mechanism Design IV
ISBN
978-3-031-70250-1
ISSN
2211-0984
e-ISSN
—
Počet stran výsledku
10
Strana od-do
202-211
Název nakladatele
Springer Science+Business Media B.V.
Místo vydání
Dordrecht
Místo konání akce
Liberec
Datum konání akce
3. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001328769400022