Inverted Kinematics of a Redundant Manipulator with a MLP Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00365828" target="_blank" >RIV/68407700:21220/22:00365828 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICECCME55909.2022.9987898" target="_blank" >https://doi.org/10.1109/ICECCME55909.2022.9987898</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICECCME55909.2022.9987898" target="_blank" >10.1109/ICECCME55909.2022.9987898</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inverted Kinematics of a Redundant Manipulator with a MLP Neural Network
Popis výsledku v původním jazyce
The article describes the solution of the inverse kinematics of a serial redundant manipulator. Reachable endpoint positions are generated randomly based on forward kinematics, described by Denavit-Hartenberg notation. If the randomly generated position is part of the area in which the desired movement is to be solved, it is recorded in a special structure where each cell corresponds to a small range of the endpoint coordinates. Up to thousands of possible combinations can be recorded in each of the cells. Based on this data, inverse kinematics cannot be solved for a redundant manipulator because the same point can be reached by infinitely many combinations of arm settings. Therefore, the prepared angle settings for reaching an individual cell are first evaluated with a suitable additional fitness function. Additionally, solutions that do not represent continuous movement are filtered. After this process, described in this article, the few best solutions are then selected from each of the cells and used to train a simple MLP (multilayer perceptron) neural network. Based on data from forward kinematics, the network is trained to obtain an inverse kinematics solution. The result is a smooth motion whose accuracy is limited by the cell size used and the amount of samples generated.
Název v anglickém jazyce
Inverted Kinematics of a Redundant Manipulator with a MLP Neural Network
Popis výsledku anglicky
The article describes the solution of the inverse kinematics of a serial redundant manipulator. Reachable endpoint positions are generated randomly based on forward kinematics, described by Denavit-Hartenberg notation. If the randomly generated position is part of the area in which the desired movement is to be solved, it is recorded in a special structure where each cell corresponds to a small range of the endpoint coordinates. Up to thousands of possible combinations can be recorded in each of the cells. Based on this data, inverse kinematics cannot be solved for a redundant manipulator because the same point can be reached by infinitely many combinations of arm settings. Therefore, the prepared angle settings for reaching an individual cell are first evaluated with a suitable additional fitness function. Additionally, solutions that do not represent continuous movement are filtered. After this process, described in this article, the few best solutions are then selected from each of the cells and used to train a simple MLP (multilayer perceptron) neural network. Based on data from forward kinematics, the network is trained to obtain an inverse kinematics solution. The result is a smooth motion whose accuracy is limited by the cell size used and the amount of samples generated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022
ISBN
9781665470957
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
—
Místo konání akce
Male
Datum konání akce
16. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—