The Master kinetic equation for the statistical treatment of the Boltzmann-Sinai classical dynamical system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F14%3A%230005082" target="_blank" >RIV/47813059:19240/14:#0005082 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1140%2Fepjp%2Fi2014-14157-4" target="_blank" >http://link.springer.com/article/10.1140%2Fepjp%2Fi2014-14157-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/i2014-14157-4" target="_blank" >10.1140/epjp/i2014-14157-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Master kinetic equation for the statistical treatment of the Boltzmann-Sinai classical dynamical system
Popis výsledku v původním jazyce
In this investigation, exact particular realizations are sought for the microscopic statistical description which is associated with the classical dynamical system (CDS) formed by N identical smooth hard spheres subject to elastic collisions (S_N-CDS). The problem is posed in the framework of the ab initio statistical description of S_N-CDS recently developed. It is shown that the Liouville equation associated with S_N-CDS admits an exact particular solution for the N-body probability density function (PDF). This is factorized in terms of the i-th particle 1-body PDF (for all i = 1, N) via suitable weighting factors, which are denoted here as particle occupation coefficients. The latter are found to depend functionally only on the 1-body PDFs which areassociated with each of the remaining particles belonging to S_N-CDS. Furthermore, the 1-body PDF is proved to obey a well-defined statistical equation, referred to here as Master kinetic equation. This is an exact kinetic equation which
Název v anglickém jazyce
The Master kinetic equation for the statistical treatment of the Boltzmann-Sinai classical dynamical system
Popis výsledku anglicky
In this investigation, exact particular realizations are sought for the microscopic statistical description which is associated with the classical dynamical system (CDS) formed by N identical smooth hard spheres subject to elastic collisions (S_N-CDS). The problem is posed in the framework of the ab initio statistical description of S_N-CDS recently developed. It is shown that the Liouville equation associated with S_N-CDS admits an exact particular solution for the N-body probability density function (PDF). This is factorized in terms of the i-th particle 1-body PDF (for all i = 1, N) via suitable weighting factors, which are denoted here as particle occupation coefficients. The latter are found to depend functionally only on the 1-body PDFs which areassociated with each of the remaining particles belonging to S_N-CDS. Furthermore, the 1-body PDF is proved to obey a well-defined statistical equation, referred to here as Master kinetic equation. This is an exact kinetic equation which
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal Plus
ISSN
2190-5444
e-ISSN
—
Svazek periodika
129
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
33
Strana od-do
"157 - 1"-"157 - 33"
Kód UT WoS článku
000339959500001
EID výsledku v databázi Scopus
—