A reproducible method to transcranial B-MODE ultrasound images analysis based on echogenicity evaluation in selectable ROI
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F14%3A%230005334" target="_blank" >RIV/47813059:19240/14:#0005334 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/47813059:19240/14:#0005345
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A reproducible method to transcranial B-MODE ultrasound images analysis based on echogenicity evaluation in selectable ROI
Popis výsledku v původním jazyce
The presented paper demonstrates how to detect pathological issues in transcranial B-MODE ultrasound images. We developed an algorithm based on binary thresholding with subsequential computing of area inside ROI which represents an area in which we detect the issue. We work with a collection of images acquisted from 3 different ultrasound machines. We detect echogenic area in substantia nigra which is primary feature to Morbus Parkinson and also raphe nucleus echogenicity to detection of other neurological diseases. All achieved results were verified by an erudite neuroso nologist and based on statistics such as correlation and kappa analysis. Average correlation between observers r > 0.88, level of agreement kappa > 0.82. So, we proved that developedalgorithm is highly reproducible and also could be used for different cases, not only in neurology due to principle of B-MODE imaging.The algorithm has been implemented in MATLAB with Image Processing Toolbox.Achieved results will verifie
Název v anglickém jazyce
A reproducible method to transcranial B-MODE ultrasound images analysis based on echogenicity evaluation in selectable ROI
Popis výsledku anglicky
The presented paper demonstrates how to detect pathological issues in transcranial B-MODE ultrasound images. We developed an algorithm based on binary thresholding with subsequential computing of area inside ROI which represents an area in which we detect the issue. We work with a collection of images acquisted from 3 different ultrasound machines. We detect echogenic area in substantia nigra which is primary feature to Morbus Parkinson and also raphe nucleus echogenicity to detection of other neurological diseases. All achieved results were verified by an erudite neuroso nologist and based on statistics such as correlation and kappa analysis. Average correlation between observers r > 0.88, level of agreement kappa > 0.82. So, we proved that developedalgorithm is highly reproducible and also could be used for different cases, not only in neurology due to principle of B-MODE imaging.The algorithm has been implemented in MATLAB with Image Processing Toolbox.Achieved results will verifie
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING
ISSN
1998-4510
e-ISSN
—
Svazek periodika
8/2014
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
98-106
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—