Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F16%3A%230005528" target="_blank" >RIV/47813059:19240/16:#0005528 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1155/2016/3460293" target="_blank" >http://dx.doi.org/10.1155/2016/3460293</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2016/3460293" target="_blank" >10.1155/2016/3460293</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network
Popis výsledku v původním jazyce
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in decision-making process of financial managers. The work focuses mainly on one representative of the intelligent soft computing techniques ? artificial neural networks. Authors suggest the new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm and a moving average. The moving average is supposes to to enhance the outputs of the network using the error part of the original RBF. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day.To determine the forecasting efficiency, they perform the comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimiz
Název v anglickém jazyce
Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network
Popis výsledku anglicky
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in decision-making process of financial managers. The work focuses mainly on one representative of the intelligent soft computing techniques ? artificial neural networks. Authors suggest the new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm and a moving average. The moving average is supposes to to enhance the outputs of the network using the error part of the original RBF. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day.To determine the forecasting efficiency, they perform the comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimiz
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Scientific World Journal
ISSN
2356-6140
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
2016
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—